留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Banach空间中含强增生算子的非线性方程的迭代解

周海云

周海云. Banach空间中含强增生算子的非线性方程的迭代解[J]. 应用数学和力学, 1999, 20(3): 269-276.
引用本文: 周海云. Banach空间中含强增生算子的非线性方程的迭代解[J]. 应用数学和力学, 1999, 20(3): 269-276.
Zhou Haiyun. Iterative Solution of Nonlinear Equations with Strongly Accretive Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 1999, 20(3): 269-276.
Citation: Zhou Haiyun. Iterative Solution of Nonlinear Equations with Strongly Accretive Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 1999, 20(3): 269-276.

Banach空间中含强增生算子的非线性方程的迭代解

详细信息
    作者简介:

    周海云(1958~ ),男,副教授,已在国内外重要杂志上发表论文38篇

  • 中图分类号: O177.91

Iterative Solution of Nonlinear Equations with Strongly Accretive Operators in Banach Spaces

  • 摘要: 设X为实Banach空间,X*为其一致凸的共轭空间.设T:XX为Lipschitzian强增生映象,L≥1为其Lipschitzian常数,k∈(0,1)为其强增生常数.设{αn},{βn}为[0,1]中的两个实数列满足:(ⅰ)αn→0(n→∞);(ⅱ)βn<L(1+L)/k(1-k)(n≥0);(ⅲ).假设为X中两序列满足:=o(βn)与μn→0(n→∞).任取x0X,则由(IS)1xn+1=(1-αn)xnnSyn+unyn=(1-βn)xnnSxnn(n≥0){所定义的迭代序列{xn强收敛于方程T
  • [1] Browder F E.Nonlinear operators and nonlinear equations of evolution in Banach spaces,[J].Proc Sympos Fure Math,1976,18
    [2] Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden,The Netherlands:Noordhoff Int Publ,1976
    [3] Kato T.Nonlinear semigroups and evolution equations[J].J Math Soc Japan,1967,19(18):508~520
    [4] Deimling K.Nonlinear Functional Analysis[M].New York/Berlin:Springer-Verlag,1985
    [5] Chidume C F.Iterative solution of nonlinear equations with strongly accretive operators[J].J Math Anal Appl,1995,195:502~518
    [6] Deng I,Ding Xieping.Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces[J].Nonlinear Anal,1995,24:981~987
    [7] Chidume C E.Steepest descent approximations for accretive operator equations[J].Nonl Anal,1996,26:299~311
    [8] Bruck R E.The iterative solution of the equation y∈x+Tx for a monotone operator T in Hilbcrt space,[J].Bull Amer Soc,1973,79:1258~1261
    [9] Ishikawa S.Fixed points by a new iteration method[J].Proc Amer Math Soc,1974,149:147~150
    [10] Zhou H Y,Jia Y T.Approximation of fixed points of strongly psrudocontractive maps without Lipschitz assumption[J].Proc Amer Math Soc.(to appear)
    [11] Zhou H Y,Jia Y T.Approximating the zeros of accretive operators by the Ishikawa iteration process[J].Abtr Appl Anal,1996,1(2):153~167
    [12] Zhou H Y.A remark on ishikawa iteration[J].Chinese Science Bulletin,1997,42:631~633
    [13] Osilike M O.Iterative solution of nonlinear equations of the -strongly accretive type[J].J Math Anal Appl,1996,200:259~271
    [14] Chidume C E.Iterative solutions of nonlinear equations in smooth Banach spaces[J].Nonl Anal,1996,26:1823~1834
    [15] Browder F E.Nonlinear mappings of nonexpansive and accretive type in Banach spaces[J].Bull Amer Math Soc,1967,73:875~882
    [16] Browder F E,Petryshyn W V.Contruction of fixed points of nonlinear mappings in Hilbert space[J].J Math Anal Appl,1967,20:197~228
    [17] Deimling K.Zeros of accretive operators,Manuscripta Math,1974,13:365~374
    [18] Chidume C E.Approximation of fixed points of strongly pscudocontractive mappings[J].Proc Amer Math Soc,1994,120:545~551
    [19] Chidume C E,Osilike M O.Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces[J].Numercal Funct Anal Optim,1994,15:779~790
    [20] Deng L.On Chidume's open qucstions[J].J Math Anal Appl,1993,174:441~449
    [21] Deng L.An iterative process for nonlinear Lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces[J].Acta Appl Math,1993,32:183~196
    [22] Zhou H Y.Iterative solutions of nonlinear equations involving strongly accretive operators without Lipschitz assumption[J].J Math Anal Appl,(to appear soon)
    [23] Wann W R.Mean value methods in iteration[J].Proc Amer Math Soc,1953,4:506~510
    [24] Rhoades B E.Commcnts on two fixed point iteration methods[J].J Math Anal Appl,1976,56:741~750
    [25] Reich S.An iterative procedure for constructing zeros of accretive sets in Banach spaces,[J].Nonlinear Anal,1978,2
    [26] Reich S.Constructive techniques for accretive and monotone operators[A].In:V.Lakshmikantham Ed.Appl Nonl Anal[M],New York:Academic Press,1979,335~345
    [27] Reich S.Constructing zers of accretive operators [J].Appl Anal,1979,9:159~163
    [28] Reich S,Strong convergence theorems for resolvents of accretive operators in Banach spaces[J].J Math Anal Appl,1980,85:287~292
    [29] You Z Y,Xu Z B.A class of iteration methods for a strongly monotone operator equation and application to finite element approximate solution of nonlinear elliptic boundary value problem[J].J Comput Math,1984,2:112~121
    [30] Xu Z B,Roach G F.A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations[J].J Math Anal Appl,1991,167:189~210
    [31] Schu J.On a theorem of C E Chidume concerning the iterative approximation of fixed points [J].Math Nachr,1991,153:313~319
    [32] Schu J.Iterative construction of fixed points of strictly pseudocontractive mappings[J].Appl Anal,1991,40:67~72
  • 加载中
计量
  • 文章访问数:  2227
  • HTML全文浏览量:  101
  • PDF下载量:  842
  • 被引次数: 0
出版历程
  • 收稿日期:  1997-04-28
  • 修回日期:  1998-04-05
  • 刊出日期:  1999-03-15

目录

    /

    返回文章
    返回