The Fractal Research and Predicating on the Time Series of Sunspot Relative Number
-
摘要: 本文应用非线性动力系统理论分析了1891年1月至1996年12月间太阳黑子月平均数变化的动力行为及其可预测性。计算了它的分形维数(D=3.3±0.2)。确定了预测的嵌入维数[2×D+1]=7;计算了Lyapunov指数(λ1=0.863),揭示了该系统的混沌特性;并计算了Kolmogorov熵(K=0.0260),用以从理论上分析这组数据可预报的时间尺度。最后根据分析的结果,从采样数据中截取一段数据进行了试验性的预测。
-
关键词:
- 太阳黑子数 /
- 分形维数 /
- Kolmogorov熵 /
- Lyapunov指数 /
- 预测
Abstract: In this paper, with the theory of nonlinear dynamic systems, It is analyzed that the dynamic behavior and the predictability for the monthly mean variations of the sunspot relative number recorded from January 1891 to December 1996. In the progress, the fractal dimension (D=3.3±0.2) for the variation process was computed. This helped us to determine the embedded dimension [2×D+1]=7. By computing the Lyapunov index (λ1=0.863), it was indicated that the variation process is a chaotic system. The Kolmogorov entropy (K=0.0260) was also computed, which provides, theoretically, the predicable time scale. And at the end, according to the result of the analysis above, an experimental predication is maded, whose date was a part cut from the sample date.-
Key words:
- number of sun spots /
- fractal dimension /
- Kolmogorov entropy /
- Lyapunov number /
- predicate
-
[1] Takens F,Mane R.Detecting strange attractors in turbulence[A].In:eds Rand D,Yong L S.Lecture Notes in Mathematics 898[R].Berlin:Springer press,1981 [2] Gu S S,Holden A V,Zhang H.The analysis of the geometric structure of the delayed time used in the embedding process in predicating chaotic time series[J].Journal of Biomathematics,1997,12(1):23~26 [3] Jackson E A.Perspectives of Nonlinear Dynamics[M].London:Cambridge University Press,1989 [4] Grassberger P,Procaccia I.Characterization of strange attractors[J].Phys Rev Lett,1983,50:346
计量
- 文章访问数: 3082
- HTML全文浏览量: 129
- PDF下载量: 1074
- 被引次数: 0