On the Solution of Nonlinear Two-Point Boundary Value Problem u"+g(t, u)=f(t), u(0)=u(2π)=0
-
摘要: 本文给出了max-min原理的一个非变分形式,证明了非线性两点边界值问题u"+g(t,u)=f(t),u(0)=u(2π)=0的解的一个存在性和唯一性定理.
-
关键词:
- Hilbert空间 /
- 微分同胚 /
- 非线性两点边界值问题 /
- 唯一解
Abstract: In this paper,a non-variational version of a max-min principle is proposed,and an existence and uniqueness result is obtained for the nonlinear two-point boundary value problem u"+g(t,u)=f(t),u(0)=u(2π)=0. -
[1] R.F.Manasevich,A non variational version of a max-min principle,Nonlinear Analysis,Theory,Methods &Applications,7(6) (1983),565-570. [2] Gaetano Zampieri,Diffeomorphisms with Banach space domains,Nonlinear Analysis,Theory,Methods &Applications,19(10) (1992),923-932.
计量
- 文章访问数: 2404
- HTML全文浏览量: 109
- PDF下载量: 769
- 被引次数: 0