An Implicit Solution of Bi-Penalty Approximation with Orthogonality Projection for the Numerical Simulation of Bingham Fluid Flow
-
摘要: 本文对Bingham流体给出了双罚函数逼近和正交投影的隐式求解方法.这个方法把Bingham流体处理为承受不等式应力约束的Newton流体的逼近解.有效地模拟了可以出现流动或不流动的“刚性核”的Bingham流体的流动问题.Abstract: An implicit algorithm of Bi-penalty approximation with orthogonality projection for the numerical simulation of Bingham fluid flow problems is proposed in this paper.A Newton fluid flow with two kinds of artificial viscosit y subjected to the inequality constraint is introduced to approximate the Bingham fluid flow.This approach can effectively simulate the Bingham fluid flow with floating rigid cores or fixing rigid cores.
-
Key words:
- Bingham fluid flow /
- penalty /
- orthogonality projection /
- finite element
-
[1] John A.Tichym,Hydrodynamic lubrication theory for the Bingham plastic flow model,J.Rheol.,3(4)(1991),477-496. [2] G.迪沃,J.L.利瓮斯,《力学和物理学中的变分不等方程》,王耀东译,科学出版社(1987). [3] J.E.Stangroom,The Bingham plastic model of ER fluids and its implications,Proceedings of the Second International Conference on ER Fluids,Technomic,Lancaster,PA(1990),41-52. [4] Therese C.Jordan,Electrortheology,IEEE Transaction on Electrical Insulation,24(5)(1989)849-878. [5] Thomas J.R.Hughes,The Finite Element Method,Prentice-Hall,Inc.,Englewood Cliffs,New Jersey 07632(1987). [6] K.W.Wang,Y.S.Kim and D.B.Shea,Structural vibration control via electrorheological-fluid based actuator with adaptive viscous and frictional damping,J.Sound Vibration,177(2)(1994)227-237. [7] J.Lubliner,Plasticity Theory,Macmillan Publishingn Company,New York(1990).
计量
- 文章访问数: 2246
- HTML全文浏览量: 114
- PDF下载量: 492
- 被引次数: 0