Singular Perturbation of General Boundary Value Problem for Nonlinear Differential Equation System
-
摘要: 本文综合利用Lyusternik-Vishik[1]的渐近方法和不动点定理研究了具有非线性边界条件的非线性微分方程组的奇摄动,在适当的条件下证得解的存在性并给出N-阶渐近展开式和有关的余项估计.Abstract: In this paper, the singular perturbation of nonlinear differential equation system with nonlinear boundary conditions is discussed. Under suitable assumptions, with the asymptotic method of Lyusternik-Vishik[1] and fixed point theory, the existence of the solution of the perturbation problem is proved and its uniformly valid asymptotic expansion of higher order is derived.
-
[1] 苏煜城,《奇异摄动中的边界层校正法》,上海科学技术出版社(1983),1-239. [2] 林宗池、林苏榕,拟线性常微分方程组边值问题解的估计,应用数学和力学,11(11)(1990),969-976. [3] 黄蔚章,拟线性常微分方程组边值问题解的估计,应用数学和力学,13(8)(1992),719-727. [4] 林宗池、林苏榕,非线性微分方程组Robin边值问题解的渐近式,福建师大学报(自然科学版),11(2)(1995),1-9. [5] F.A.Howes and R.E.ÓcMalley,Jr.,Singular perturbation of semilinear second order systems,Lecture Notesin Math,827,Springer Berlin(1980),131-150. [6] R.E.ÓcMalley,Jr.,Singular perturbations of a differential equations,J.Diff.Eqs.,8(1970),431-447. [7] 江福汝,关于常微分方程非线性边值问题的奇异摄动,中国科学,A辑(3)(1985),280-292. [8] 林宗池,具有非线性边界条件的二阶非线性系统的奇摄动,福建师大学报(自然科学版 ),7(3)(1991),13-20.
计量
- 文章访问数: 2569
- HTML全文浏览量: 143
- PDF下载量: 706
- 被引次数: 0