Dynamic Analysis to Infinite Beam under a Moving Line Load with Uniform Velocity
-
摘要: 基于线性叠加原理,本文首先证明了广义Duhamel积分,把运动线源荷载作用下梁的动力问题转化为求解位置固定的线源荷载作用下梁的动力响应即线源脉冲响应函数。然后,利用Laplace变换和Fourier变换求解梁的动力方程,获得了线源脉冲响应函数,继而得到了运动线源荷载下梁的动力解答。对动力响应的进一步分析表明,其最大值总是发生在线源的中心并随荷载运动而运。动最后,定义了运动动力系数。Abstract: Based on the principle of linear superposition,this paper proves generalized Duhamel's integral which reverses moving dynamical load problem to fixed dynamical load problem.Laplace transform and Fourier transform are used to solve patial differential equation of infinite beam.The generalized Duhamel's integral and deflection impulse response function of the beam make it easy for us to obtain final solution of moving line load problem.Deep analyses indicate that the extreme value of dynamic response always lies in the center of the line load and travels with moving load at the same speed.Additionally,the authors also present definition of moving dynamic coefficient which reflects moving effect.
-
Key words:
- generlaized Duhamel’s integral /
- integral transform /
- infinite beam /
- dynamic response /
- moving effect /
-
[1] 李国豪编著,《桥梁结构稳定与振动》,中国铁道出版社(1993),367-402. [2] S.Timoshenko,Method of analysis of statical and dynamical stress inrail,Proc.of the Sec.Inter.Con.for Appl.Mech.,Zurich (1926),407-418. [3] L.Fryba,Vibr a tion of Solids and Structures under Moving Loads,Noordhoff International Publishing (1971),214-233. [4] C.R.Steele,The finite beam with a moving load,J.Appl.Mech.,35(4) (1967),111-119. [5] 李国豪,拱桥振动问题,同济大学学报,(3) (1956),140-148. [6] 郑小平、王尚文、陈百屏,弹性地基无限长梁动力学问题的一般解,应用数学和力学,12(7) (1991),593-597. [7] 陆振球编著,《经典和现代数学物理方程》,上海科学技术出版社(1992),394-425.
计量
- 文章访问数: 2447
- HTML全文浏览量: 144
- PDF下载量: 754
- 被引次数: 0