留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形弹性夹杂与裂纹相互干扰的边界元分析

王银邦

王银邦. 矩形弹性夹杂与裂纹相互干扰的边界元分析[J]. 应用数学和力学, 2004, 25(2): 135-140.
引用本文: 王银邦. 矩形弹性夹杂与裂纹相互干扰的边界元分析[J]. 应用数学和力学, 2004, 25(2): 135-140.
WANG Yin-bang. Boundary Element Analysis of Interaction Between an Elastic Rectangular Inclusion and a Crack[J]. Applied Mathematics and Mechanics, 2004, 25(2): 135-140.
Citation: WANG Yin-bang. Boundary Element Analysis of Interaction Between an Elastic Rectangular Inclusion and a Crack[J]. Applied Mathematics and Mechanics, 2004, 25(2): 135-140.

矩形弹性夹杂与裂纹相互干扰的边界元分析

详细信息
    作者简介:

    王银邦(1956- ),男,甘肃人,教授,博士(Tel:86-532-5901684;Fax:86-532-5901949;E-mail:wangybouc@sina.com).

  • 中图分类号: O346.1

Boundary Element Analysis of Interaction Between an Elastic Rectangular Inclusion and a Crack

  • 摘要: 使用边界元法研究了无限弹性体中矩形弹性夹杂对曲折裂纹的影响,导出了新的复边界积分方程.通过引入与界面位移密度和面力有关的未知复函数H(t),并使用分部积分技巧,使得夹杂和基体界面处的面力连续性条件自动满足,而边界积分方程减少为2个,且只具有1/r阶奇异性.为了检验该边界元法的正确性和有效性,对典型问题进行了数值计算.所得结果表明:裂纹的应力强度因子随着夹杂弹性模量的增大而减小,软夹杂有利于裂纹的扩展,而刚性较大的夹杂对裂纹有抑制作用.
  • [1] WANG Yin-bang,Chau K T.A new boundary element method for plane elastic problems involving cracks and holes[J].International Journal of Fracture,1997,87(1):1—20. doi: 10.1023/A:1007469816603
    [2] Chau K T,WANG Yin-bang.Singularity analysis and boundary integral equation method for frictional crack problems in two-dimensional elasticity[J].International Journal of Fracture,1998,90(3):251—274. doi: 10.1023/A:1007422305110
    [3] Chau K T,WANG Yin-bang.A new boundary integral formulation for plane elastic bodies containing cracks and holes[J].International Journal of Solids and Structures,1999,36(14):2041—2074. WANG Yin-bang,Chau K T.A new boundary element method for mixed boundary value problems involving cracks and holes:Interactions between rigid inclusions and cracks[J].International Journal of Fracture,2001,110(4):387—406. doi: 10.1016/S0020-7683(98)00078-X
    [5] WANG Yin-bang.A new boundary integral equation method of three-dimensional crack analysis[J].International Journal of Fracture,1993,63(4):317—328. doi: 10.1007/BF00013041
    [6] WANG Yin-bang,CHEN Wei-jiang.Interaction of two equal coplanar square cracks in three-dimensional elasticity[J].International Journal of Solids and Structures,1993,30(23):3315—3320. doi: 10.1016/0020-7683(93)90116-O
    [7] 王银邦,王海峰.圆形裂纹分析的边界积分方程方法[J].兰州大学学报,1997,33(1):33—38.
    [8] 王银邦.非轴对称载荷作用下的外部圆形裂纹问题[J].应用数学和力学,2001,22(1):9—15.
    [9] Sih G C.Handbook of Stress-Intensity Factors[M].Bethlehem:Lehigh University,1973.
    [10] Kitagawa H,Yuuki R,Ohira T.Crack-morphological aspects in fracture mechanics[J].Engineering Fracture Mechanics,1975,7(3):515—529. doi: 10.1016/0013-7944(75)90052-1
    [11] Pan E,Amadei B.Fracture mechanics analysis of cracked 2-D anisotropic media with a new formulation of the boundary element method[J].International Journal of Fracture,1996,77(2):161—174. doi: 10.1007/BF00037235
  • 加载中
计量
  • 文章访问数:  2828
  • HTML全文浏览量:  133
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-05-19
  • 修回日期:  2003-09-05
  • 刊出日期:  2004-02-15

目录

    /

    返回文章
    返回