非线性非完整约束空间准坐标表示的系统的基本动力学方程
The Fundamental Equations of Dynamics Using Representation of Quasi-Coordinates in the Space of Non-Linear Non-Holonomic Constraints
-
摘要: 用与准坐标表示的一阶非线性非完整约束超曲面的基矢量共线的量和米歇尔斯基方程点来作为一阶非线性非完整约束变质量系统的基本动力学方程.由此可导出用准坐标表示的各种形式的运动微分方程.和约登(Jourdain)原理相容.举了例子.Abstract: The dot product of the bases vectors on the super-surface of the non-linear nonholonomic constraints with one order, expressed by quasi-coorfinates, and Mishirskiiequalions are regarded as the fundamental equations of dynamics with non-linear andnon-holononlic constraints in one order for the system of the variable mass. From thesethe variant ddferential-equations of dynamics expressed by quasi-coordinates arederived. The fundamental equations of dynamics are compatible with the principle ofJourdain. A case is cited.
-
[1] 刘书振、陈书勤、罗绍凯,《分析力学》,河南大学版出社,开封(1992),289
计量
- 文章访问数: 2160
- HTML全文浏览量: 133
- PDF下载量: 540
- 被引次数: 0