The First-order Approximation of Non-Kirchhoff-Love Theory for Elastic Circular Plate with Fixed Boundar under Uniform Surface Loading(Ⅲ)── Numerical Results
-
摘要: 本文在前文[1]、[2]所得的微分方程和有关边界条件的基础上.采用一种新的整体插值法,求得了弹性圆板在一侧受均载而四周固定的条件下弯曲问题的不用克希霍夫-拉夫假设的一级近似理论的数值结果,并与经典的克希霍夫-拉夫理论[3]和Reissner修正理论[4,5]的结果进行了比较.
-
关键词:
- 弹性圆板 /
- Kirchhoff-Love假设 /
- 整体插值法
Abstract: Based upon the differential equations and their related boundary conditions givenin the previous papers[1,2],using a global interpolation method,this paper presents anumerical solution to the axisymmetric bending problem of non-Kirchhoff-Love theoryfor circular plate with fixed boundary under uniform surface loading.All the numericalresults obtained in this paper are compared with that of Kirchhoff-Love classicaltheory[3] and E.Reissner's modified theory[4]-
Key words:
- elasticity /
- circular plate /
- non-Kirchhoff-Love theory
-
[1] W.Z.Chien,Nou-Kirchhoff-Love theory of elastic circular plate fixed in the boundar and loaded on one of the surfaces.Proc.of the Inter.Conf.on Computational Methods in Structural and Geotechnfcal Engineering.Vol.Ⅰ:1-6,Hong Kong(1995). [2] 钱伟长,弹性圆板在一侧受均载而四周固定条件下不用Kirchhoff-Love假设的一级近似理论(1),应用数学和力学,18(2)(1997),95-104. [3] 钱伟长,叶开沅《弹性力学》,科学出版社(1956). [4] E.Reissner,The effect of transverse shear deformation on the bending of elastic plates,J.Appl.Mech.,12,(2)(1945),69-77. [5] 曹志远等著,《厚板动力学理论及其应用》,科学出版社(1983). [6] A.E.McPherson,W.Ramberg and S.Levy,Normal pressure tests of circular plates with clamped edges,Rep,744(1942).
计量
- 文章访问数: 2309
- HTML全文浏览量: 180
- PDF下载量: 452
- 被引次数: 0