留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主轴内蕴法与高维张量方程AX—XA=C*

梁浩云

梁浩云. 主轴内蕴法与高维张量方程AX—XA=C*[J]. 应用数学和力学, 1996, 17(10): 889-894.
引用本文: 梁浩云. 主轴内蕴法与高维张量方程AX—XA=C*[J]. 应用数学和力学, 1996, 17(10): 889-894.
Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.
Citation: Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.

主轴内蕴法与高维张量方程AX—XA=C*

基金项目: * 广东省科学基金

Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C

  • 摘要: 本文将主轴内蕴法推广到高维空间,并讨论了高维张量方程AX-XA=C的解。
  • [1] R.Hill,Aspects of invariance in solid mechanics,Adr.in Appl.Mech.,18,1 (1978).
    [2] 郭仲衡,R,N,Dubey,非线性连续介质力学中的"主轴法",力学进展.13(1) (1.683).
    [3] Guo Zhongheng,Rates of stretch tensors,J.Elasticity,14 (1984),263.
    [4] 梁浩云,从主轴表示到抽象表示,力学进展;20(3) (1990),303.
    [5] 梁浩云,连续介质基本主标架旋率的绝对表示,应用数学和力学,12(1) (1991),39.
    [6] 梁浩云,《主轴法的近期进展》,兰州大学出版社(1991).
    [7] 郭仲衡,TH.Lehmann,伸缩张量率的抽象表示,力学学报,23(6) (1991),712.
    [8] Guo Zhongheng,Th.Lehmann,Liang Haoyun and Chi-sing Man,Twirl tensors and the tensor equation AX-XA=C,J.Elasticity,27 (1992),227.
    [9] Guo Zhongheng,Th.Lehmann and Liang Haoyun,Further remarks on stretch tensors,Transactions of the CSME,15,2 (1991),161.
    [10] Th.Lehmann,Guo Zhongheng and Liang Haoyun,The conjugacy between Cauchy stress and logarithm of the left stretch tensor,Eur.J.Mech.,A/Solids,10,4 (1991),395.
    [11] Th.Lehmann and Liang Haoyun,The stress conjugate to logarithmic strain InV.,ZAMM,73,12(1993),357.
    [12] 郭仲衡,连续介质的自旋和伸长率标架旋率,应用数学和力学,9(12) (1988), 1045-1048.
    [13] 程莉、黄克智,固化物质导数与标架旋率,力学学报,19 (1987),524.
    [14] A.Hoger and D.E.Carlson,On the derivative of the square root of a tensor and Guo's rate theorem,J.Elasticity.14,3 (1984),329.
    [15] M.Wedderburn,On the linear matrix equation,Proc.Edinburgh Math.Soc.,22(1904),49.
    [16] D.E.Rutherford,On the solution of the matrix equation AX-XB=C,Nederl.Akad.Wtensch.Proc.,Ser.A,35 (1932),53.
    [17] W.E.Roth,The equations AX-YB=C and AX-XB=C in matrices,Proc.Rarer.Math.Soc.,3(1952),392.
    [18] M.Rosenblum,On the operator equation BX-XA=Q,Duke Math.J.,23 (1956),263.
    [19] Ma Er-chieh,A finite series solution of the matrix equation AX-XB=C,SIAM J.Appl.Math.,14(1966),490.
    [20] R.A.Smith,Matrix equation XA+BX=C,SIAM J.Appl.Math.,16 (1968),198.
    [21] A.Jameson,Solution of the equation AX+XB=C by inversion of a M × M or N × N matrix,SIAM J.Appl.Math.,16 (1968),1020.
    [22] P.Lancaster,Explicit solution of linear matrix equation,SIAM Rev.,12(1970),544.
    [23] P.C.Muller,Solution of the matrix equation AX+XB=-Q and STX-XS=-Q*.SIAM J.Appl.Math.,18 (1970),682.
    [24] V.Kucera,The matrix equation AX+XB=C,SIAM J.Appl.Math.,26 (1974),15.
    [25] A.J.M.Spencer,Theory of invariants,in Continuum Physics,Ed.by A.C.Eringen.Vol.1,Academic Press,New York (1971),239-353.
  • 加载中
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  104
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-03-06
  • 刊出日期:  1996-10-15

目录

    /

    返回文章
    返回