留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义弹塑性梁理论及接触问题中的时偶变分不等式*

高扬

高扬. 广义弹塑性梁理论及接触问题中的时偶变分不等式*[J]. 应用数学和力学, 1996, 17(10): 895-908.
引用本文: 高扬. 广义弹塑性梁理论及接触问题中的时偶变分不等式*[J]. 应用数学和力学, 1996, 17(10): 895-908.
Gao Yang. Contact Problems and Dual Variational Inequality of 2-D Elastoplastic Beam Theory[J]. Applied Mathematics and Mechanics, 1996, 17(10): 895-908.
Citation: Gao Yang. Contact Problems and Dual Variational Inequality of 2-D Elastoplastic Beam Theory[J]. Applied Mathematics and Mechanics, 1996, 17(10): 895-908.

广义弹塑性梁理论及接触问题中的时偶变分不等式*

基金项目: * 美国国家科学基金

Contact Problems and Dual Variational Inequality of 2-D Elastoplastic Beam Theory

  • 摘要: 为研究摩擦接触问题,本文建立了一个具有二类独立交量的二维弹塑性梁模型。由此提出了一个新的非线性二次互补性问题。其中的外部互补性条件定义了自由边界;而内部互补性条件则控制了弹塑性分界面。文中证明了此二次互补性问题等价于一非线性变分不等式,并导出了其对偶变分不等式。本文结果显示对偶问题较原问题有更多的优越性。应用于塑性极限分析理论中,文中最后证明了一个简单的下限定理。
  • [1] J, P, Aubin,Applied Functional Analysis,Wiley-Intersicencc,New York(1979).
    [2] G.Allen, Variational inequalities, complemPntarity problems,and duality theorems,T,Math.Analy.Appl.,58(1977), 1-10.
    [3] J, Chakrabarty,Theory of Plasticity, McGraw-Hill Book Company(1987),791.
    [4] I, Ekeland and R.Temam, Convex Analysis and Yariational Problems, North-Holland(1976).
    [5] G. Fichera,Existence theorems in elasticity-boundary value problems of elasticity with unilateral constraints,in Encyclopedia of Phgsics,Ed.by S,FlÜgger,Vol.Ⅵ a/2,Mechanics of Solids(Ⅱ),Ed, by C, Truesdell, Springer Verlag (1972),347-427.
    [6] 高扬,凸分析及塑性力学的数学理论,《现代数学与力学》,郭仲衡编,北京大学出版社(1987),165-185.
    [7] Guo Zhongheng,Th.Lehmann and Liang Haoyun,The abstract representation of rates of stretch tensors,Acta Mechanica Sinica,23,6 (1991).712.Ⅱ
    [8] Y,Gao,Panpenalty finite element programming for limit analysis, Computers&Structures,28 (1988). 749-755.
    [9] David Yang Gao and David L. Russell,A finite element approach to optimal control of a "smart" beam,in Int. Conf. Computational Methods in Structural and Geoteehnical Engineering,Ed,by P,K.K.Lee, L, G.Tham and Y, K.Cheuug,December 12-14,1994,Hong Kong (1994),135-140.
    [10] David Yang Gao and David L. Russell,An extended beam theory for smart materials applications,Part j .Extended beam models,duality theory and finite element simulations, J.Applied Math, and Optimization, 34(3)(1996).
    [11] R .Glowinski,K.L.Lions and R.Trémoliéres,Numerical Analysis of variationdl Inequalities, North-Holland,Amsterdam,New York,Oxford(1981).
    [12] S,Karamardian,Generalized complememtarity problems,J.of Optimization Theory and Applications,6(19)(1971),161-168.
    [13] N-Kikuchi and J.T. Oden, Contact Problems in Elasticity A Study of Yariational I nequalities and Finite Element Methods,SIAM,Philadephia(1988),495.
    [14] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inevualities and Their Applications,Academic Press,New York (1980).
    [15] A,Klarbring,A,Mikelié and M, Shillor,Duality applied to contact problems with friction, Appl.Math, Optim,,22 (1990),211-226.
    [16] J, Lovisek,Duality in the obstacle and unilateral problem for the biharmonic operator,Aplikace Matematiky,Svazek,26 (1981),291-303.
    [17] U,Mosco,Dual variational inequalities, J, Math Anal, Appl,40(1972), 202-206.
    [18] S. T.au and Y.Gao,Obstacle. problem for von Kármán equations,Adv, Appl.Math., 13(1992),123-141.
  • 加载中
计量
  • 文章访问数:  2219
  • HTML全文浏览量:  162
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-02-21
  • 刊出日期:  1996-10-15

目录

    /

    返回文章
    返回