留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

没有紧性, 连续性和凹性的多准则对策的帕雷多平衡*

丁协平

丁协平. 没有紧性, 连续性和凹性的多准则对策的帕雷多平衡*[J]. 应用数学和力学, 1996, 17(9): 801-808.
引用本文: 丁协平. 没有紧性, 连续性和凹性的多准则对策的帕雷多平衡*[J]. 应用数学和力学, 1996, 17(9): 801-808.
Ding Xieping. Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity[J]. Applied Mathematics and Mechanics, 1996, 17(9): 801-808.
Citation: Ding Xieping. Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity[J]. Applied Mathematics and Mechanics, 1996, 17(9): 801-808.

没有紧性, 连续性和凹性的多准则对策的帕雷多平衡*

基金项目: * 国家自然科学基金

Pareto Equilibria of Multicriteria Games without Compactness,Continuity and Concavity

  • 摘要: 在本文中利用作者得到的一极小极大不等式,对不具有紧性,连续性和四性的多准则对策在拓扑矢量空间和自反Banach空间内证明了某些帕雷多平衡存在定理。
  • [1] R.J.Williams,Sufficient conditions for Nash equilibria in N-person games over reflexive Banach spaces,J.Optim.Theory and appl.,30(1980),383-394.
    [2] J.Yu,On Nash equilibria in N-person games over reflexive Banach spaces,J.Optirn.Theorv acrd Appl.,73(1992),211-214.
    [3] J.C.Yao,Nash equilibria in N-person games with convexity,Appl..Lfath.Zett.,6.5(1992),67-69.
    [4] K.K.Tan and J.Yu,New minimax inequality with applications to existence theorems of equilibrium points,J.Optim.Theory and Appl.,82(1994),105-120.
    [5] D.Ghose and U.R.Prasad,Solution concepts in two-person multicriteria games,J.Ovtim.Theory and ADUI.,63(1989),167-189.
    [6] F.Szidarovszky,M.E.Gershou and L.Duckstein,Techniques forhlultiobjective Decision Making in Svstems Management,Elsevier,Amsterdam(1986).
    [7] R.V.Khachatryan,Dynamically stable optimality principle in multicriteria multistep game.Dokl.Akad.Nauk.Arm.,SSR.,86,1(1988),23-26.(in Russian)
    [8] S.Y.Wang,An existence theorem of a Pareto equilibrium,Appl..Yfath.Lett.,4,3(1991),61-63.
    [9] K.C.Border,Fired Point Theorems with Applications to Economics and Game Theory,Cambridge University Press,Cambridge(1985).
    [10] J.X.Zhou and G.Chen,Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities,J.Math.Anal.Appl.,132(1988),213-225.
    [11] G.Tian,Generalizations of the FKKM theorem and the Fan minimax inequality with applications to maximal elements,price equilibrium and complementarily,J.Math,Anal.Appl.170(1992),457-471.
    [12] X.P.Ding,New H-KKM theorems and their applications to geometric property,coincidence theorems,minimax inequality and maximal elements,Indian J.Pure and Appl.Math.,26,1(1995),1-19.
    [13] X.P.Ding,Best approximation and coincidence theorems,J.Sichuan Normal University,18,2(1995),21-29.
    [14] Fan Ky,A miximax inequality and applications,Inequalities III,Ed.by O.Shisha Acad.Press,New York(1972),103-113.
    [15] G.Allen,Variatiooal inequalities,complementarity problems,and duality theorems,J.Math.Anal.Appl.,58(1977),1-10.
  • 加载中
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  111
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-09-06
  • 刊出日期:  1996-09-15

目录

    /

    返回文章
    返回