M.E.Shvez迭代解法及其在力学中的应用
M. E. Shvez lterative Method and its Application in Mechanics
-
摘要: 当微分方程中含有微量项时,可用M.E.Shvez迭代法求解。但当微量项出现奇性,或在某一区间内微量项并非微量时。用此法求解将遇到困难。本文针对这类问题,把原M.E.Shvez迭代解法稍加改变。算例表明,用改进了的M.E.Shvez法求解上述问题。其精度比原M.E.Shvez法的有所提高。
-
关键词:
- 迭代法 /
- 奇异摄动法 /
- 地球—月球—宇宙飞船
Abstract: When there is small quantity term contained in differential equation, we may solve if by using the M.E.Shvez iterative method. If foe small quantity term has singularity, of in foe certain region where foe small quantity term is not small, using this method to solve such differential equation, we may meet difficulties. In this paper,the author improves the M.E.Shvez method. Several examples are given to demonstrate the algorithm. -
[1] 钱伟长主编,《奇异摄动理论及其在力学中的应用》.科学出版社(1981),47-51 [2] A.H,奈弗.《摄动方法》王辅俊等译.上海科技出版社(1984),85-86. [3] 袁锰吾,平行平板间径向气流的Navier-Stokes方程的新的近似解,上海力学,2(1985),1-9
计量
- 文章访问数: 2072
- HTML全文浏览量: 168
- PDF下载量: 500
- 被引次数: 0