球面各向同性圆锥其顶端受力时的弹性力学解*
Elasticity solutions of Spherically Isotropic Cones under Concentrated Loads at Apex
-
摘要: 本文在文[9]的基础上,研究球面各向同性圆锥顶端作用集中力,集中力矩时的位移和应力分布.最后讨论了空心锥顶端受力的问题.Abstract: Based on the Ref.[9].the displacement and stress distributions in a spherically isotropic cone subjected to concentrated loads at apex are studied The displacementand stresses are given explicitly for the cone in compression torsion and bending cases respectively based on the situation of the concentrated forces and moments Finally.the hollow cone problems are discussed.
-
Key words:
- clasticity solutions /
- sphericlly isotropic cone compression /
- torsion /
- bending /
-
[1] A.I.Lure,Three Dimensional Problems of the Theorg of Elesticity,Iterscience Publishers,New York(1964),137-144. [2] S.G.Lekhniskii,Theorg og Elasticity of Anisotropic Body,Mir Publishers(1981),71-72.41-49. [3] Hu Haichang,On the three dimensional problems of the theory of elasticity of transversely isotropic body,Acta Scientia Sioica,2(2)(1953),175-151. [4] A.E.H.Love,A Treatise the Mathematical Theory of Elasticity,4th ed.,Cambridge(1937),164-165. [5] Hu Haichang,on the general theory of elasticity for a transversely isotropic medium,Acta Scientia Sinica,3(1954),247-26 [6] W.T.Chen,On some Problems in spherically isotroPic elastic materials,Journal of Applied Mechanics.ASME,33(3)ser.E.(1966),539-545. [7] A.T.Vasilenko,Ya.M.Grigorenko and N.D.Pankratove,Stress state of transversely isotroPic nonhomogeneous thickwall spherical sliells mechanics of solids,11(1)(1976),56-61. [8] H.J.Ding and Y.J.Ren,Equillibrium problems of spherically isotroPic bodies,Applied Methematics and Mechancis,12(2)(1991),155-162. [9] 丁皓江等,球面各向同性弹性力学的位移解法,力学学报,26(2)(1994),186-197.
计量
- 文章访问数: 2258
- HTML全文浏览量: 130
- PDF下载量: 497
- 被引次数: 0