留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有双曲线边界的各向异性介质的二维问题

胡元太 赵兴华

胡元太, 赵兴华. 具有双曲线边界的各向异性介质的二维问题[J]. 应用数学和力学, 1995, 16(5): 421-430.
引用本文: 胡元太, 赵兴华. 具有双曲线边界的各向异性介质的二维问题[J]. 应用数学和力学, 1995, 16(5): 421-430.
Hu Yian-tai, Zhao Xing-hua. Two-Dimensional Prohlem of Anisotro Fic Elastic Bodywith a Hyperbolic Boundary[J]. Applied Mathematics and Mechanics, 1995, 16(5): 421-430.
Citation: Hu Yian-tai, Zhao Xing-hua. Two-Dimensional Prohlem of Anisotro Fic Elastic Bodywith a Hyperbolic Boundary[J]. Applied Mathematics and Mechanics, 1995, 16(5): 421-430.

具有双曲线边界的各向异性介质的二维问题

Two-Dimensional Prohlem of Anisotro Fic Elastic Bodywith a Hyperbolic Boundary

  • 摘要: 文章研究了在纯弯矩M0作用下,具双曲线边界的各向异性介质的二维变形问题,求得了介质内部的应力应变场的具体形式,在此基础上,以单晶铝板(立方晶系介质)为例,我们求得了沿双曲线边界的环向应力及x2=0面上的应力分布,当双曲线退化成一双边裂纹时,文章也求得了相应的应力强度因子(k1,k2,k3),并且也发现,k1与材料的弹性性质无关。
  • [1] 钱伟长、叶开沅,《弹性力学》,科学出版社,北京(1980 ).
    [2] G.P.Cherepanov,Mechanics of Brittle Fracture,McGraw-Hill Inc.(1979).
    [3] S.G.Lekhnitskii,Theroy of Elasticity of an Anisotropic Body,MIR Moscow(1981).
    [4] S.S.Wang and I.Choi,Boundary layer thermal stress in angleply composite laminates,Modern Developments in Composite Materials and Structures,ASME(Edited by J.R.Vinstor)(1979),315-341.
    [5] J.D.Eshelby,W.T.Read and W.Shockley,Anisotropic elasticity with applications to dislocations theory,Acta Metallurgica,1(1953),251-259.
    [6] A.N.Stroh,Dislocations and cracks in anisotropic elasticity,Phil.Mag,3(1958),625-646.
    [7] A.N.Stroh,Steady state problems in anisotropic elasticity,J.Math.Phys.,41(1962),77-103.
    [8] D.M.Barnett,and J.Lothe,An image force theorem for dislocation in anisotropic bicrystals,J.Phys,F.,4(1974),1618-1635.
    [9] D.M.Barnett,J.Lothe,K.Nishioka and R.J.Asaro,Elastic surface waves in anisotropic crystals:a simplified method for calculating Rayleigh velocities using dislocation theory,J,Phys.F.,3(1973),1083-1096.
    [10] R.J.Asaro,J.P.Hirth,D.M.Barnett and J.Lothe,The elastic energy of a straight dislocation in an infinite anisotropic elastic medium,Phys.State.Sol.B.,60(1973),261-271.
    [11] J.Lothe,and D.M.Barnett,On the existence of surface-wave solutions for anisotropic elastic half-space with free surface,J.Appl.Phys.,47(1976),428-433.
    [12] P.Chadwick,and T.C.T.Ting,On the structure and invariance of the Barnett-Lothe tensors,Q.Appl.Math.,45(1987),419-427.
    [13] T.C.T.Ting,Some identities and the structure of Ni in the Stroh formalism of anisotropic elasticity,Q.Appl.Math.,46(1988),109-120.
    [14] T.C.T.Ting,The Stroh formalism and some invariable quantities in two-dimensional anisotropic elasticity,Advance in Mechanics,29.(1992),145-160.
    [15] T.C.T.Ting,Line forces and dislocations in angularly inhomogeneous anisotropic elastic wedges and spaces,Q.Appl.Math.,47(1988),123-128.
    [16] T.C.T.Ting,The critical angle of the anisotropic elastic wedge asubjected to uniform tractions,J.Elast.,20(1988),113-130.
    [17] B.A.Auld,Acoustic Fields and Waves in Solhts,John Wiley(1973).
    [18] G.C.Sih a.nd H.Liebowitz,Mathematical theory of Brittle fracture,An Advance Treatise on Fracture,2,ed.H.Leibowitz,Academic Press(1968),67-190.
    [19] T.C.T.Ting,Barnett-Lothe tensors,and their associated tensors for monoclinic materials with the symmetryplane at x3=0,J.Elast.,27(1992),143-165.
  • 加载中
计量
  • 文章访问数:  2371
  • HTML全文浏览量:  195
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-01-15
  • 修回日期:  1994-10-05
  • 刊出日期:  1995-05-15

目录

    /

    返回文章
    返回