留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滞时Volterra积分方程数值方法的数值稳定性分析

田红炯 匡蛟勋

田红炯, 匡蛟勋. 滞时Volterra积分方程数值方法的数值稳定性分析[J]. 应用数学和力学, 1995, 16(5): 451-457.
引用本文: 田红炯, 匡蛟勋. 滞时Volterra积分方程数值方法的数值稳定性分析[J]. 应用数学和力学, 1995, 16(5): 451-457.
Tian Hong-jiong, Kuang Jiao-xun. Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument[J]. Applied Mathematics and Mechanics, 1995, 16(5): 451-457.
Citation: Tian Hong-jiong, Kuang Jiao-xun. Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument[J]. Applied Mathematics and Mechanics, 1995, 16(5): 451-457.

滞时Volterra积分方程数值方法的数值稳定性分析

Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument

  • 摘要: 本文给出数值方法解Volterra积分方程的稳定性分析,我们判定可约积分方法的数值稳定性基于如下试验方程其中τ是正常数,pq是复值的。在上述试验方程的情况下,我们研究θ-方法及可约积分方法的稳定性。
  • [1] S.Amni,C.T.H.Baker,P.J.van der Houwen and P.H.M.Walkenfelt,Stability analysis of numerical methods for Volterra integral equations with polynomial convolution kernels,J.Integral Equation,5(1983),73-93.
    [2] C.T.H.Baker and M.S.Keech,Stability region in the numerical treatment of Volterra integral equations,SIAM J.Numer.Anal.,15(1978),349-417.
    [3] R.Bellman and K.L.Cooke,Differential-Difference Equations,Academic Press,New York,San Francisco,London(1953).
    [4] J.M.Bownds,J.M.Cushing and R.Schutte,Existence,uniqueness and extendility of solutions of Volterra integral system with multiple variable lags,Funkcial.Ekvac.,19(1976),101-111.
    [5] B.Cahlon,J.Nachman and D.Schmidt,Numerical solution of Volterra integral equations with delay arguments,J.Integral Equations,7(1984)',191-208.
    [6] B.Cahlon,On the numerical stability of Volterra integral equations with delay argument,J.C.A.M.,33(1990),97-104.
    [7] G.Dahlquist,A special stability problem for linear multistep methods,BTT,8(1963),27-43.
    [8] T.Grand,Numerical methods for integration of delay differential equations,Thesis.Dpto.Mat.Apl.Univ.Zeragoza(1986).
    [9] K.J.intt Hout,A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations,Reporthr.TW-90-09,Dept.Math.and Comput.Sc.Univ.of Leiden(1990).
    [10] K.J.intt Hout and M.N.Spijker,The θ-methods in the numerical solhtion of delay differential equations,Rep.TW-89-03,Univ.Leiden(1989).
    [11] Z.Jackiewicz,Asymptotic stability analysis of θ-methods fro: functional differential equations,Numer.Math.,48(1984),389--396.
    [12] J.D.Lambert; Computational Methods in Ordinary Differential Equations,Wiley,New York(1973).
    [13] Lu Lian-hua,Numerical Stability of the θ-methods for systems of differential equations with sereval delay terms,or.C.A.M.,34(1991),291-304.
    [14] M.Marsden,Geomen T of Polynomials,Amer.Mathematical Soci.,Providence,RI(1966).
    [15] D.Morugim.Impulsive Structures with Delayed Feedback,Moscow(1961).(in Russian).
    [16] D.Morugim,Resistence of impact with retarded inverse connections,Sovetskoe Radio(1961).(in Russian).
    [17] M.G.Roth,Difference methods for stiff delay differential equations,Thesis,Dept.Comput.Sci.,Univ.Illinois at Urbana-Champaign,Urbana,IL(1980).
    [18] Tian Hong-jiong and Kuang Jiao-xun,The stability of the θ-methods in the numerical solution of delay differential equations with several delay terms,J.C.A.M.(1994).
    [19] P.H.M.Walkenfelt,The construction of reducible quadrature rules for Volterra integral and integral-differential equations,IMA J.Numer.Anal.,2(1982),131-152
  • 加载中
计量
  • 文章访问数:  2077
  • HTML全文浏览量:  122
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-05-23
  • 刊出日期:  1995-05-15

目录

    /

    返回文章
    返回