耗散孤立波方程的吸引子*
Attractors of Oisslpative Soliton Equation
-
摘要: 本文研究耗散孤立波方程的长期动力学行为:吸引子的存在性、吸引子的几何结构、耗散系统参数扰动下动力行为、吸引子的分形维估计。Abstract: In this paper,we study longtime dynamic behavior of dissipative soliton equations existence of attractor, geometrical structure of attractor, dynamic behavior under the parametric perturbation of dissipative soliton equation, estim ate of fractal dimension of attractor.
-
[1] 谷超豪等,《孤立子及应用》.浙江科技出版社(1990). [2] Foias.C.G.Sell and R.Teman.Inertial manifold for dissipan PDE's,J.Diff.Egu.73(1988).309-353. [3] Fotas C.,O.Manley and R.Teman.Attractors fur the Benard problem:existence and physical bounds on their fractal dissipative,Nonli Anal.TMA.11.8(1987).939-967. [4] Constain.P,C.Foias and R.Teman.Attractors representing turbulent flows.Memntoirs.Amer.Math.Suc.,53.314(1985). [5] Ghidaglia,J.,Weakly damped fored kortewegde vries equations hehave as a finite dimensional dynamical system in the long time.J.Diff.Equ.74(1988),369-390. [6] Sell,G.and Y You.Inertial manifolds: the non-self-adjoins case,J.Diff.Ewu.,96(1992).203-255. [7] H ale.J.,Asympotic behaviour and dynamics in infinite dimensions,Nonli.Diff.Equ.,Research Notes in Math.,5(1985).
计量
- 文章访问数: 1830
- HTML全文浏览量: 80
- PDF下载量: 627
- 被引次数: 0