当极限方程有奇性时高阶线性常微分方程柯西问题解的渐近式*
The Asymptotic ExPression of the Solutlon of the Cauchy’s Problem for a Higher order Linear ordinary Differential Equation when the Limit Equation Has Singularity
-
Abstract: In this paper we consider the asymptotic expression of the solution of the Cauchy's problem for a higher order equation when the limit equation has singularity.In orderto construct the asymptotic expression of the solution,the region is divided into threesub-areas.In every small region,the solution of the differential equation is different.
-
Key words:
- limit equation /
- singularity /
- asymptotic expression
-
[1] Линъ Цаун-чи,Асимцтотика решений задачи Коши в случае когда предельяое уравнение имеет псобенность,ДАН СССР,157(3)(1964),522-523; Math.Reviews,29,(3)(1965),2490. [2] 蔡建平,具有奇性的四阶线性常微分方程柯西问题解的渐近式,福建师范大学学报(自然科学版),8(3)(1992),7-12. [3] 苏煌城,《奇异摄动中的边界层校正法》,上海科技出版社,上海(1983). [4] E·卡姆克著.《常微分方程手册》.张鸿林译,科学出版社.北京(1977).
计量
- 文章访问数: 1879
- HTML全文浏览量: 132
- PDF下载量: 444
- 被引次数: 0