电机工程中一类非线性振动方程的渐近分析*
Asymptotic Analysis if a Class of Nonlinear Oscillation Equation in Electrical Engineering
-
摘要: 本文采用文[1]中提出的修正的Крнлов-Боголюбов方法,研究电机工程中一类非线性振动方程,定量地给出了存在极限环的参数范围以及极限环的振幅,并判定该极限环是不稳定的,这些结果与已知的定性分析结果完全一致,从而进一步证实了上述渐近方法的有效性。
-
关键词:
- 非线性振动 /
- 极限环 /
- 渐近分析 /
- 修正的Крнлов-Боголюбов方法
Abstract: In the present paper,we investigate a class of nonlinear oscillation equations inelectrical engineering by using the modified Krylov-Bogolyubov method presentedin[1]. We obtain quantitatively ihe parameier range for the existence of a limit cycleand the amplitude of the limit cycle,and find that the limit cycle is unstable. All the results agree entirely with the known results given by qualitative analysis,and hence confirm the effectiveness of the above-mentioned asymptotic method -
[1] 戴世强,强非线性振子灼渐近分析,应用数学和力学,6(5)(1985),395-400, [2] 沈家骥、俞伯华,非线跳扰动方程rJ紊功性态:数学学很,31(2) (1988), 215-220, [3] 戴世强、庄峰青,一类非线性振动系统的渐近解.中国科学(A辑),29(1) (1986), 34-40. [4] Byrd,P.F.and M.D.,Friedman,Handbook of Elliptic Integrals for Engineers and Scientists,2nd ed.,Springer,New York (1971).
计量
- 文章访问数: 2317
- HTML全文浏览量: 140
- PDF下载量: 450
- 被引次数: 0