留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ⅰ型试件裂端三维应力结构分析之二——应力结构分析

岳珠峰 郑长卿

岳珠峰, 郑长卿. Ⅰ型试件裂端三维应力结构分析之二——应力结构分析[J]. 应用数学和力学, 1993, 14(9): 775-785.
引用本文: 岳珠峰, 郑长卿. Ⅰ型试件裂端三维应力结构分析之二——应力结构分析[J]. 应用数学和力学, 1993, 14(9): 775-785.
Yue Z. F., Zheng C. Q.. The Analyses of the Three-Dimensional Stress Structurenear the Crack Tip of Mode I CT Specimens in Elastic-Plastic State Part 2:The Analyses of the Stress Structure[J]. Applied Mathematics and Mechanics, 1993, 14(9): 775-785.
Citation: Yue Z. F., Zheng C. Q.. The Analyses of the Three-Dimensional Stress Structurenear the Crack Tip of Mode I CT Specimens in Elastic-Plastic State Part 2:The Analyses of the Stress Structure[J]. Applied Mathematics and Mechanics, 1993, 14(9): 775-785.

Ⅰ型试件裂端三维应力结构分析之二——应力结构分析

The Analyses of the Three-Dimensional Stress Structurenear the Crack Tip of Mode I CT Specimens in Elastic-Plastic State Part 2:The Analyses of the Stress Structure

  • 摘要: 在文献[1]的基础上,本文分别对试件纤维区和剪切唇的应力结构进行考察.纤维区的应力结构特点为:可以进行变量z分离;对称面上的应力结构可由平面应变FEM解或HRR场解经应力三维度修正获得;载荷水平及试样厚度对应力结构的影响,可由厚度方向的CTOD得到反映,所得到应力表达式大为简便与直观.对剪切唇的应力结构进行考察,发现满足一定的精度可由插值法近似获得.本文提出了一种平面应变近似程度系数,并对此进行分析,该系数可较好地反映试样厚度、型式及载荷水平.本文也对断裂参量进行了分析,指出可对CTOD进行应力三维度修正获得.
  • [1] 岳珠峰等,I型裂纹试件裂端三维应力结构分析之一—裂端约束参数与断裂参数分析,应用数学和力学,14(7)(1993),625-634.
    [2] Hutchinson,J.W.,Singular behaviour at the end of a tensile crack.in a hardening material,J.Mech.Phys.Solids,16(1968),13-31.
    [3] Rice,J.R.and G.F.Rosengren.Plane strain deformation near a crack tip in a power-law hardening material,J.Mech.Phys.Solids,16(1968),1-12.
    [4] 岳珠峰,金属材料韧性断裂的计算模拟,西北工业大学硕士论文,(1991).
    [5] Su,J.and M.J.Tu,Plane stress elastic-plastic fracture criteria and constaint intensity in crack tip regions,Eng.Frac.Mech.,37(1990),675-680.
    [6] Shih,C.F.and M.D.German,Requirements for a one parameter characterization of crack tip fields by the HRR singularity,Int.J.Frac.,27(1981),27-43.
    [7] Su,J.,Z.J.Deng,Z.H.Li and M.J.Tu,Stress triaxiality in crack tip region of bend specimens with different crack-depth and fracture criterion at initiation,Eng.Frac.Mech.,36(1990),321-326.
    [8] 庄韬,金属和合金在平面应变条件下的双参数弹塑性断裂判据,力学学报,17,(1987增刊),154-16.
    [9] Matsoukas,G.,B.Cotterell and Y.-W.Mar,The effect of shallow cracks on crack tip opening displacement,Eng.Frac.Mech.,24(1986),837-842.
    [10] Bapu Rao,M.N.,Three-dimensional analysis of a finite thick plate with a through crack,Int.J.Frac.,17(1981),43-45.
    [11] Bapu Rao,M.N.,Three-dimensional stress problem of a finite thick plate with a through crack under tension,Proc.ICF6,2(1986),963-969.
    [12] 靳志和、黄克智,平板裂纹前缘三维效应区的弹性力学分析,固体力学学报,11(1990 ),106-116.
    [13] 陈小明、杨南生、官忠信,弹塑性状态下I型裂纹前缘应力应变奇异性分析,应用数学与力学,8(7)(1987),611-616.
    [14] 陈晓明、官忠信,三维变形状态下I型裂纹裂尖应力场结构有限元分析,应用数学与力学,9(6)(1988),559-565.
    [15] 陈晓明,弹塑性三维应力结构分析,西北工业大学博士论文,(1988).
    [16] 陈境,金属断裂研究文集,冶金出版社(1982).
    [17] 陈晓明,杨南生,官忠信,弹塑性I型裂纹裂端三维应力结构分析,固体力学学报,11(1987),191-200.
    [18] Machida,K.,M.Kikuchi and H.Miyamoto,The thickness effects of the side-grooved CCT specimen,Transaction of Japan Society of Mechanical Engineers.491(1987),A.
    [19] 陈晓明,杨南生,官忠信,弹塑性I型裂纹裂端三维应力结构分析,固体力学学报,11(1990)191-200.
  • 加载中
计量
  • 文章访问数:  2080
  • HTML全文浏览量:  104
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  1991-06-25
  • 刊出日期:  1993-09-15

目录

    /

    返回文章
    返回