含参变量富里叶级数的Laplace变换求和法
Summation of Fourier Series with Parameter by Laplace Transforms
-
摘要: 本文建立了含参变量富里叶级数的Laplace变换求和定理.利用Laplace变换表可以求得许多在力学上有重要应用的新的含参变量富里叶级数的和式.Abstract: In this paper, the theorems concerning the summation of Fourier series with parameter are given by using the Laplace transforms. By means of the known result of Laplace transforms, many new, important problems of summation of Fourier series with parameter in mechanics can be solved.
-
Key words:
- Fourier series /
- summation /
- Laplace transforms
-
[1] 严宗达,《结构力学中的富里叶级数解法》,天津大学出版社(1989). [2] Harry,F.Davis,Fourier Series and Orthogonal Functions,Allyn and Bacon Boston(1983). [3] 钱伟长,付氏变换在三角级数求和中的应用,应用数学和力学,10(5)(1989),371-384.
计量
- 文章访问数: 2128
- HTML全文浏览量: 131
- PDF下载量: 430
- 被引次数: 0