渐近法在一类强非线性系统中的应用
The Application of the Asymptotic Method to a Class of Strongly Nonlinear Systems
-
摘要: 本文采用文[1、2]的渐近解形式,将渐近法推广到如下较为广泛一类的强非线性振动系统式中g和f为x,的非线性解析函数,ε>0为小参数,并假设对应于ε=0的派生系统有周期解.本文推得系统(0.1)的渐近解递推方法,并应用于实例.Abstract: In this paper, according to the form of the asymptotic solution of papers [1,2], the asymptotic method is extended to the following a class of more general strong nonlinear vibration systems where g and f are the nonlinear analytical-functions of x and , and ε>0 is a small parameter. We assume that the derivative system corresponding to ε=0 has periodic solution. The recurrence equations of the asymptotic solution for the system(0.1) are deduced in this paper, and they are applied to practical examples.
-
[1] Li Li(李骊),The periodic solution of quasi-conservative system,Proc.Int.conf.Nonl.Mech.Beijing Science Press,(1985). [2] 徐兆,非线性力学中的一种新的渐近方法,力学学报,17(3) (1985),266-271. [3] 戴世强、庄峰青,一类非线性振动系统的渐近解,中国科学(A辑).1,(1986),34-40. [4] Villar,G.and F.Zanolin,Some remarks on non-conservative ascillatory systems with poriodi solutions,Int,1. Non-linear Mech,23(11)(1988),1-7. [5] 舒仲周,《运动稳定性》,西南交通大学出版社(1989),168-172. [6] 黄安基,非线性保守系统的几种形式,第五届全国铁路高校理论力学教学讨论会,长沙(1986). [7] 戴德戎、陈建彪,强非线性振动系统的渐近解法,力学学报.22(2)(1988),206-212. [8] 曹登庆,强非线性振动方程的渐近分析,西南交通大学学报,(1)(1988),40-51. [9] 戴世强,强非浅性振子的渐近分析.应用数学与力学.6(5)(1985),395-400.
计量
- 文章访问数: 2268
- HTML全文浏览量: 149
- PDF下载量: 480
- 被引次数: 0