平面映射的周期解分支
Bifurcations of Periodic Solutions for Plane Mappings
-
Abstract: In this paper, using some techniques, we prove that there exists the regular homodinic point for Taylor mapping with 4<A≤1.5π and motion of bouncing ball with 4<r≤1.5π. This result implies that the corresponding systems have infinitely many distinct periodic points.
-
Key words:
- Taylor mapping /
- motion of bouncing ball /
- regular homoclinic point /
- bifurcation /
- periodic point
[1] Devaney,R.L.,Homoclinic bifurcations and the area-conserving henon mapping,J.Diff.Equs.,51(1984).254-266. [2] Churchill,R.and D.Rod,Pathology in dynamical system III,analystic hamiltons,J.Diff.Equs.,37(1980),23-28. [3] 朱思铭等,全国动力系统及其应用学术讨i}会交流资料(杭州),(1988). [4] Guckenheimer,J.and P.Holmes,Nonlinear Oscillations,Dynamical Systems and Bifurcation of Vector Fields,Springer-Verlag(1983). [5] 孙义隧和C,Frveshite.二维保面积映射的Kolmogorov嫡,中国科学(A),4(1982),357-363. [6] 李继彬.《浑纯与Melnikov方法》,重庆大学出版社,重庆(1989). 计量
- 文章访问数: 1858
- HTML全文浏览量: 133
- PDF下载量: 553
- 被引次数: 0