U型波纹壳轴对称大挠度非线性变形问题(Ⅱ)——计及壁厚分布的变化
On Problems of U-Shaped Bellows with Nonlinear Deformation of Large Axisymmetrical Deflection(I)——Counting Variation of Thickness Distribution
-
摘要: 在文[1]基础上,假设U型波纹壳子午线上任一点处壁厚的对数与该点到对称轴距离的对数成线性关系,给出了相应的轴对称大挠度问题的摄动解,讨论了由工艺因素引起的壁厚分布的变化对波纹壳刚度的影响.Abstract: On the basis of paper [1], assuming the logarithm of thickness at arbitrary point on a U-shaped bellows meridian is linear with the logarithm of distance between that point and axis of symmetry, perturbation solutions of the corresponding problems of large axisymmetrical deflection are given. The effects of thickness distribution variation, which result from technology factors, on stiffness of bellows are discussed.
-
Key words:
- U-shaped bellows /
- variation of thickness distribution /
- decay rate
-
[1] 胡狼,U型波纹壳轴对称大挠度非线性变形问题〔I)—计及圆环壳的非线性变形、压缩角,应用数学和力学,14(3)(1993),237-250. [2] Акселърад Э.Л.,ПериоДичекое решение осесииетричной задачи теорииоболочек,Inzh Zhur,Mekh Tuerd,(2)(1966),77-83. [3] 徐志翘等,变厚度U型波纹壳大挠度非线性问题的摄动解,清华大学学报.25(1)(1985),39-51. [4] 樊大钧.《波纹管设计学》.北京理工大学出版社(1988).
计量
- 文章访问数: 2247
- HTML全文浏览量: 171
- PDF下载量: 435
- 被引次数: 0