留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义变分原理在非线性结构分析中的应用

成祥生

成祥生. 广义变分原理在非线性结构分析中的应用[J]. 应用数学和力学, 1993, 14(5): 397-406.
引用本文: 成祥生. 广义变分原理在非线性结构分析中的应用[J]. 应用数学和力学, 1993, 14(5): 397-406.
Cheng Xiang-sheng. The Generalized Variational Principles in Applications for Nonlinear Structural Analysis[J]. Applied Mathematics and Mechanics, 1993, 14(5): 397-406.
Citation: Cheng Xiang-sheng. The Generalized Variational Principles in Applications for Nonlinear Structural Analysis[J]. Applied Mathematics and Mechanics, 1993, 14(5): 397-406.

广义变分原理在非线性结构分析中的应用

The Generalized Variational Principles in Applications for Nonlinear Structural Analysis

  • 摘要: 本文讨论在结构力学中用拉格朗日乘子法建立的广义变分原理以分析非线性超静定结构。我们假定结构的材料关于应力-应变的关系具有σ=Bε1/m或τ=Cγ1/m的形式,即结构的物理方程具有幂函数的形式。文中举出几个超静定结构的例子,例如桁架、梁、刚架和扭杆。
  • [1] 钱伟长,《关于弹性力学的广义变分原理及其在板壳问题上的应用》,科学出版社(1964).
    [2] 钱伟长,弹性理论中广义变分原理的研究及其在有限元计算中的应用,力学与实践,1 (1)(1979), 16-24及1(2) (1979), 18-27.
    [3] 钱伟长,《变分法及有限元》(上册),科学出版社(1980).
    [4] 钱伟长,拉氏乘子法.高阶拉氏乘子法和弹性理论中更一般的广义变分原理,应用数学和力学,4(2) (1983).
    [5] 钱伟长,《广义变分原理》,知识出版社(1985).
    [6] 成祥生,待定乘数法在解超静定杆系结构问题中的应用,江苏省力学会论文91964).
    [7] 成祥生,材料力,乒中某些超静定结构的一种解法,力学与实践.1(1) (1979), 46-47.
    [8] 成祥生,结构分析中的广义变分原理及其应用,应用数学和力学,6(7) (1985), 639-648.
    [9] W ashizu, K.,(鹜津久一郎),Trariationad Method in Elasticity and Plasticity,Perga-man, London (1968).
    [10] 鸳津久一郎,《コネルヂ原理入门》.培风馆(1970).
    [11] Pian, T,H,(卞学璜),Tong Pin(董平),Finite element methods in continuum mechanics, Adv, in App.Mec,,12(1972),1-53.
    [12] 薛大为.建议一组关于极限分析的定理.科学通报,20(4) (1975), 81.
    [13] Фихтенголъц Г.М.,Курс Дuфференчцалзнозо ц Иumeipaлънoio Исччсленця,Т.I.Гостехиздат.М.Л.(1949)
    [14] Timoshenko,S.and J.Gere,Mechanics of Materials,Van Nostrand Reinhold Company,(1972)
    [15] Engesser,F.,On statically indeterminate frame with any low of deformation and on theorem of minimum complementary energy,Jour.of Arch and Engin.Union,Hannover,35(1889) 733-744.(in German)
    [16] Westergaard,H.M.,On the method of complementary energy and its applications to structures stressed beyond the proportional limit,to buckling and vibrations to suspension bridges,Proc.of ASCE,67,2(1941) 199.
    [17] Westergaard,H.M.,On the method of complementary energy,Trans.of ASCE,107,(1942) 765-793.
    [18] 钱令希,余能原理,中国科学,1(1950)449.
    [19] Charlton,T.M.,Analysis of statically-indeterminate structures by the complementary energy method,Engineering,174(1952) 389-391.
    [20] Brown,E.H.,The energy theorems of structural analysis,Engineering,179(1955) 305-308,339-342,400-403.
    [21] Hoff,N.J.,The Analysis of Structures,John Wiley and Sons,Inc.,New York,(1956) 493.
    [22] Argyris,J.H.and S.Kelsey,Energy Theorems and Structural Analysis,Butterworth and Co.,Ltd.,London,(1960) 85.
    [23] Langhaar,H.L.,Energy Methods in Applied Mechancis,John Wiley and Sons,Inc.,New York,(1962) 350.
    [24] Au,T.,Elementary Structural Mechancis,(1963) 521.
    [25] Libove,C.,Complementary energy method for finite deformations,Pro.of ASCE,Jour.of Engi.Mech.Divi.90,EM6(1964) 49-71.
    [26] Oran,C.,Complementary energy method for buckling,Pro.of ASCE,Jour.of EMD.,93,EM1(1967) 57-75.
    [27] Oden,J.T.Mechanics of Elastic Structures,(1967) 381.
    [28] Oran,C.,Complementary energy concept for large deformations,Proc.of ASCE,Jour.of Struc.Divi.93,ST1(1967) 57-75.
  • 加载中
计量
  • 文章访问数:  1849
  • HTML全文浏览量:  137
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  1990-01-04
  • 刊出日期:  1993-05-15

目录

    /

    返回文章
    返回