包含极值点和分枝点的解曲线跟踪算法的摄动解法
Perturbation Formulation of Continuation Method Including Limit and Bifurcation Points
-
摘要: 本文提出了采用摄动格式求解非线性方程组的解曲线跟踪算法的计算格式.文中着重讨论了解曲线上非正则点的搜索,以及从这些非正则点——转向点或分枝点——继续跟踪超临界平衡路径的计算方法.文中把这一算法应用于弹性薄壳的屈曲分析.通过柱壳和环壳的算例得到它们的整个屈曲过程的平衡路径和变形形态.Abstract: This paper gives the perturbation formulation of continuation method for nonlinear equations. Emphasis is laid on the discussion of searching for the singular points on the equilibrium path and of tracing the paths over the limit or bifurcation points. The method is applied to buckling analysis of thin shells. The pre-and post-buckling equilibrium paths and deflections can be obtained, which are illustrated in examples of buckling analysis of cylindrical and toroidal shells.
-
Key words:
- continuation method /
- perturbation /
- limit point /
- bifurcation point /
- thin shell buckling
-
[1] Keller,H.,Lecture on Nonlinear Method in Bifurcation Problems(1987). [2] 高尔腊伊,A,and G.瓦特桑,矩阵特征值问题的计算方法(1980). [3] 吴怡,清华大学博士论文,清华大学工程力学系(1989). [4] 李庆杨、白峰杉,清华大学科学报告87-011,清华大学应用数学系(1987). [5] Sanders,J.,Quart.Appl.Math.,21(1963),21. [6] Yamaki,N.,Elastic Stability of Circular Cylindrical Shells(1984). [7] Pakagiotopoulos,G.,Int.J.Pres.Ves.and Piping,20(1985),87. [8] Sobel,L.and W.Flugge,J.AIAA,5(1967),425. [9] Bushnell,D.,J.AIAA,5(1967),1455. [10] Jordan,P.,J.AIAA,11(1973),1439.
计量
- 文章访问数: 1838
- HTML全文浏览量: 83
- PDF下载量: 466
- 被引次数: 0