Asymptotic Analysis of Mode Ⅱ Stationary Growth Crack on Elastic-Elastic Power Law Creeping Bimaterial Interface
-
摘要: 建立了弹性-幂硬化蠕变性材料Ⅱ型界面裂纹准静态扩展的力学模型,求得了在裂纹表面自由和裂纹面有摩擦接触两种情况下,裂纹尖端应力场分离变量形式的渐近解.求解结果表明:Ⅱ型界面裂纹问题的应力、应变具有相同的奇异性;Ⅱ型界面裂纹尖端场不存在振荡奇异性;材料的幂硬化指数n和弹性模量比对裂纹尖端应力场幂硬化蠕变性材料区有着显著的影响,而弹性区仅受幂硬化指数n的影响,当n很大时,蠕变变形占主导地位,应力场趋于稳定,不随n的变化而变化;泊松比对裂纹尖端应力场的影响不明显.
-
关键词:
- 弹性-幂硬化蠕变性材料 /
- Ⅱ型界面裂纹 /
- 裂纹尖端场
Abstract: A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface.For two kinds of boundary conditions on crack faces,traction free and frictional contact,asymptotic solutions of the stress and strain near tip-crack were given.Results deriv ed indicate that the stress and strain have the same singularity,there is not the oscillatory singularity in the field;the creep power-har dening index n and the ratio of Young's module notably influence the crack-tip field in region of elastic power law creeping material and nonly influence distribution of stresses and strains in region of elastic material.When n is bigger,the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack-tip field. -
[1] 王仲茂,卢万恒,胡江明.油田油水井套管损坏的机理及防治[M]. 北京: 石油工业出版社,1994,61—126. [2] Williams M L. The stress around a fault or crack in dissimilar media[J]. Bulletin of the Seismological Society of America,1959,49(2):199—204. [3] Comninou M. The interface crack[J].J Appl Mech,1977,44(4):631—636. doi: 10.1115/1.3424148 [4] Delale F,Erdogan F. On the mechanical modeling of the interfacial region bonded half-plane[J].ASME J Appl Mech, 1988,55(2):317—324. doi: 10.1115/1.3173677 [5] Shih C F, Asaro R J. Elastic-plastic analysis of crack on bi-material interfaces-Part Ⅰ:Small scale yielding[J].J Appl Mech,1988,55(2):299—316. doi: 10.1115/1.3173676 [6] Shih C F,Asaro R J. Elastic-plastic analysis of crack on bi-material interfaces-PartⅡ:Structure of small scale yielding fields[J].J Appl Mech,1989,56(4): 763—779. doi: 10.1115/1.3176170 [7] Wang T C. Elastic-plastic asymptotic fields for cracks on bimaterial interfaces [J].Engng Fracture Mech,1990,37(3): 527—538. doi: 10.1016/0013-7944(90)90378-T [8] Hui C Y,Riedel H. The asymptotic stress and strain field near the tip of a growing crack under creep condition [J]. Int J Fracture,1981,17(4):409—425. doi: 10.1007/BF00036192 [9] Gao Y C.Further study on strain singularity behavior of moving crack in elastic-viscoplastic materials[J]. Theoretical and Applied Fracture Mechanics,1990,14(3):233—242. doi: 10.1016/0167-8442(90)90022-R [10] Taher M, Saif A,Hui C Y. Plane strain asymptotic field of a crack growing along an elastic-elastic power law creeping bimaterial interface[J].J Mech Phys Solids,1994,42(2): 181—214. doi: 10.1016/0022-5096(94)90008-6 [11] Tang L Q,Sun X G,Wang Z Q. Near tip field for stationary growth crack at the interface between an elastononlinear viscous material and an elastic solid[J].Acta Mechanica Solida Sinica,1995,8(增刊):646—649. [12] 李永东,唐立强.刚性-粘弹性材料Ⅱ型界面裂纹准静态扩展的渐近解[J].哈尔滨工程大学学报,2000,21(2):58—66. [13] 李永东.油水井套管损坏的断裂力学机理的研究[D].博士学位论文.哈尔滨:哈尔滨工程大学,2001.
计量
- 文章访问数: 2669
- HTML全文浏览量: 152
- PDF下载量: 1203
- 被引次数: 0