一类二维流场模型的周期解与浑沌解的共存性*
Coexistence of the Chaos and the Periodic Solutions in Planar Fluid Flows
-
摘要: 本文研究Kelvin-Stuart猫眼流在周期扰动下的动力学行为,运用Melnikov方法确定出振动型周期轨产生偶数阶次谐分枝、旋转型周期轨产生任意阶次谐分枝的条件,并进一步发现周期解与浑沌解共存的复杂现象.Abstract: This paper discusses the dynamic behavior of the Kelvin-Stuart cat's eye flow under periodic perturbations. By means of the Melnikov method the conditions to have bifurcations to subharmonics of even order for the oscillating orbits and to have bifurcations to subharmonics of any order for the rotating orbits are given, and further, the coexistence phenomena of the chaotic motions and periodic solutions are presented.
-
Key words:
- chaos /
- bifurcation /
- transverse /
- heteroclinic cycle /
- homoclinic orbit /
- cat’s eye flow /
- vortex
-
[1] Bertozzi,A.L.,Heteroclinic orbits and chaotic dynamics in planar fluid flows,SIAM.J.Math.Anal.,19,6(1988),1271-1293. [2] 李继彬,《浑沌与Melnikov方法》,重庆大学出版社(1989). [3] Langebartel,R.G.,Fourier expansions of rational fractions of elliptic integrals and Jacobian elliptic functions,SIAM.J.Math.Anal.,11,3(1980),506-513. [4] Guckenheimer,J.and P.Holmes,Nonlinear Oscillations,Dynamical Systems and Bifurcations of Vector Fields Springer-Verlag(1983). [5] Li Ji-bin and Wang Bao-hua,Chaos and subharmonic bifurcations in the periodically forced system of phase-locked loops,Annals of Differential Equations,5,4(1989),407-426.
计量
- 文章访问数: 1961
- HTML全文浏览量: 132
- PDF下载量: 462
- 被引次数: 0