留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半线性抛物型方程奇异摄动问题的数值解

苏煜城 沈全

苏煜城, 沈全. 半线性抛物型方程奇异摄动问题的数值解[J]. 应用数学和力学, 1991, 12(11): 979-988.
引用本文: 苏煜城, 沈全. 半线性抛物型方程奇异摄动问题的数值解[J]. 应用数学和力学, 1991, 12(11): 979-988.
Su Yu-cheng, Shen Quan. The Numerical Solution of a Singularly Perturbed Problem for Semilinear Parabolic Differential Eqnation[J]. Applied Mathematics and Mechanics, 1991, 12(11): 979-988.
Citation: Su Yu-cheng, Shen Quan. The Numerical Solution of a Singularly Perturbed Problem for Semilinear Parabolic Differential Eqnation[J]. Applied Mathematics and Mechanics, 1991, 12(11): 979-988.

半线性抛物型方程奇异摄动问题的数值解

The Numerical Solution of a Singularly Perturbed Problem for Semilinear Parabolic Differential Eqnation

  • 摘要: 本文讨论具有抛物边界层的半线性抛物型方程奇异摄动问题的数值解法,在非均匀网格上构造了两层非线性差分格式,证明了差分格式是一致收敛的,给出了一些数值例子.
  • [1] Trenogin,V.A.,On the asymptotic character of solutions of near-linear parabolic equations with a parabolic boundary layer,Usp.Mat.Nauk,16,1(1961),163-169.
    [2] Bakhvalov,N.S.,On the optimizaiton of the methods for solving boundary value problems in the presence of a boundary layer,Zh.Vychisl.Mat.i Mat.Fiz.,9,(1969),841-859.
    [3] Vulanovic,R.,On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh,Zh.Rad.Prir-mat.Fak.Univ.u Novom Sadu,Ser.Mat.,13(1983),187-201.
    [4] Boglaev.I.P.,An approximate solution of a nonlinear boundary value problem with a small parameter multiplying the highest derivative,Zh.Vychisl.Mat.i Mat.Fiz.,24,11(1984), 1649-1656.
    [5] Shishkin,G.I.,Solution of a boundary value problem for an elliptic equation with small parameter multiplying the highest derivatives,Zh.Vychisl.Mat.i Mat.Fiz.,26,7(1986), 1019-1031.
  • 加载中
计量
  • 文章访问数:  1945
  • HTML全文浏览量:  86
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  1990-10-11
  • 刊出日期:  1991-11-15

目录

    /

    返回文章
    返回