高间Melnikov方法
Higher-Order Melnikov Method
-
摘要: 本文把原有Melnikov方法推广到高阶情况.找到了二阶次谐Melnikov函数表达式,并且证明了在一定条件下可以用二阶次谐Melnikov函数来判定系统的次谐或超次谐的存在.
-
关键词:
- Meinikov方法 /
- 次谐分叉 /
- 超次谐分叉
Abstract: In this paper the Melnikoy method has been generalized to the case of higher-order by finding an explicit expression for second-order subharmonic Melnikov function, and it has been proved that the existence of subharmonic or hyper-subharmonic of a system can be proved under certain conditions by use of second-order Melnikov function.-
Key words:
- Melnikov method /
- subharmonic bifurcation /
- hyper-subharmonic bifurcation
-
[1] Melnikov V. K., Trans..Moscov. Math. Soc. 12 (1963),1-56. [2] Guckenheimer J., P. J. Holmes,Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Veriay (1983). [3] Chow, S. N., J. K. Hale, and J. Mallet-Paret, J. Diff.Eq.37, 3(1980), 351-373. [4] Keener J. P,Study Appl.Math., 67, 1 (1982), 25-44. [5] 刘曾荣、姚伟国、朱照宣,应用数学和力学,7, 2 (1986), 103-108 [6] 钱敏、潘涛、刘曾荣,物理学报,36, 2(1987), 149-156. [7] Bareone A. and G. Paterno, Physics and Application of the Jorsephson Effect, Interscience Publication(1982). [8] Stoker J.J., Nonlinear Vibration in Mechanical and Electrical System, Interscience, New York(1950). [9] 钱敏、潘涛、沈文仙,平面Hamilton系统在周期小扰动下次调和解的存在性和稳定性.数学学报(待发表).
计量
- 文章访问数: 2155
- HTML全文浏览量: 134
- PDF下载量: 518
- 被引次数: 0