拟线性常微分方程组边值问题的奇摄动
Singular Perturbation of Boundary Value Problem of Systems for Quasilinear Ordinary Differential Equations
-
摘要: 本文研究拟线性常微分方程组边值问题x′=f(t,x,y,ε),εy″=g(t,x,y,ε)y′+h(t,x,y,ε), x(0,ε)=A(ε),y(0,ε)=B(ε),y(1,ε)=C(ε)的奇摄动.其中x,f,y,h,A,B和C均属于Rn和g是对角矩阵.在适当的假设下,利用对角化技巧和微分不等式理论获得了解的存在和它的按分量逐个一致有效的估计.Abstract: In this paper, we study the singular perturbation of boundary value problem of systems for quasilinear ordinary differential equations: x′=f(t,x,y,ε),εy″=g(t,x,y,ε)y′+h(t,x,y,ε), x(0,ε)=A(ε),y(0,ε)=B(ε),y(1,ε)=C(ε) where x,f,y,h,A,B and C belong to Rn and a is a diagonal matrix.Under the appropriate assumptions, using the technique of diagonalization and the theory of differential inequalities we obtain the existence of solution and its componentwise uniformly valid asymptotic estimation.
-
[1] Chang,K.W.,Singular perturbation of a general boundary value problem,SLAM J.Aath.Anal.,3,3(1972),520-526. [2] 林宗池,微分不等式理论和对角化技巧在奇摄动问题中的应用,第二届全国近代数学与力学讨论会文集,中国力学会,上海(1987, 12), 37-39. [3] Chang, K, W, and F, A, Howes,《非线性奇异摄动现象的理论和应用》,林宗池等译,福建科技出版社(1989). [4] Howes,F.A.,Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems,SIAM J.Math.Anal.,13,1(1982),61-80. [5] Smith.D.R.,Singular Perturbation Theory,An introduction with applications,Cambridge University Press Cambridge(1985). [6] Howes F.A.and R.E.O’Malley Jr.,Singular perturbation of semilinear second order systems,O.D.E and P.D.E.,131-150.Lecture Notes in Math.,Springer,827. [7] Lin Zong-chi,The higher order approximation of solution of quasilinear second order systems for singular perturbation,Chin.Ann.,8B,3(1987),357-363.
计量
- 文章访问数: 2018
- HTML全文浏览量: 126
- PDF下载量: 675
- 被引次数: 0