一类含小参数的Hill方程的自由振动
Free Vibration of a Class of Hill’s Equation Having a Small Parameter
-
摘要: 本文研究一类含小参数的Hill方程的初值问题,利用边值问题可解性条件及摄动理论中的伸缩参数法,给出寻求该初值问题近似周期解的方法,并以Mathieu方程为例作了具体计算.Abstract: In this paper, we consider the initial value problem of a class of Hill's equation having a small parameter. Using the solvable condition of boundary value problem and the stretched parameter method in the perturbation techniques, we present the method which can be applied to obtain asymptotic periodic solution of the initial value problem. As an example, we consider Mathieu equation and present its computational result.
-
[1] 卡姆克,E.,《常微分方程手册》,科学出版社(1977), 312-313 [2] Levy,D.and J.B.Keller,Instability intervals of Hill's equation,Comm.Pure Appl.Math.,16(1963),469-476. [3] Davis,S.H.and S.Rosenblat,A quasiperiodic Mathieu-Hill equation,SIAM J.Appl.Math.,38(1980),139-155. [4] Berryman,J.G.,Floquet exponent for instability intervals of Hill's equation,Comm.Pure.Appl.Math.,32(1979),113-120. [5] Hochstadt,H.,On the explicit solution of a special Hill's.equation,J.Math.Anal.Appl.,79(1981),517-520. [6] Arron,T.and B.Simon,The asymptotics of the gap in the Mathieu equation,Ann.Physics,134(1981),76-84. [7] Nayfeh,A.H.,Introduction to Perturbation Techniques,J..Wiley&Son,New York(1981),247.
计量
- 文章访问数: 1710
- HTML全文浏览量: 70
- PDF下载量: 567
- 被引次数: 0