留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形构造中地震波传播的非对称交错网格模拟

孙卫涛 杨慧珠

孙卫涛, 杨慧珠. 地形构造中地震波传播的非对称交错网格模拟[J]. 应用数学和力学, 2004, 25(7): 686-694.
引用本文: 孙卫涛, 杨慧珠. 地形构造中地震波传播的非对称交错网格模拟[J]. 应用数学和力学, 2004, 25(7): 686-694.
SUN Wei-tao, YANG Hui-zhu. Simulation Seismic Wave Propagation in Topographic Structures Using Asymmetric Staggered Grids[J]. Applied Mathematics and Mechanics, 2004, 25(7): 686-694.
Citation: SUN Wei-tao, YANG Hui-zhu. Simulation Seismic Wave Propagation in Topographic Structures Using Asymmetric Staggered Grids[J]. Applied Mathematics and Mechanics, 2004, 25(7): 686-694.

地形构造中地震波传播的非对称交错网格模拟

基金项目: CNPC-清华大学基金资助项目(2002CXKF-4)
详细信息
    作者简介:

    孙卫涛(1975- ),男,河南安阳人,博士(联系人.Tel:+86-10-62795215,+86-10-62783149,Fax:+86-10-62781824;E-mail:sunwt@tsinghua.edu.cn).

  • 中图分类号: P631.414

Simulation Seismic Wave Propagation in Topographic Structures Using Asymmetric Staggered Grids

  • 摘要: 提出了一种新的三维空间对称交错网格差分方法,模拟地形构造中弹性波传播过程.通过具有二阶时间精度和四阶空间精度的不规则网格差分算子用来近似一阶弹性波动方程,引入附加差分公式解决非均匀交错网格的不对称问题.该方法无需在精细网格和粗糙网格间进行插值,所有网格点上的计算在同一次空间迭代中完成.使用精细不规则网格处理海底粗糙界面、 断层和空间界面等复杂几何构造, 理论分析和数值算例表明, 该方法不但节省了大量内存和计算时间, 而且具有令人满意的稳定性和精度.在模拟地形构造中地震波传播时,该方法比常规方法效率更高.
  • [1] Alterman Z,Karal F C Jr.Propagation of elastic waves in layered media by finite difference methods[J].Bulletin f the Seismological Society of America,1968,58(1):367—398.
    [2] Kelly K R,Ward R W,Treiter S,et al.Synthetic seismograms,a finite difference approach[J].Geophysics,1976,41(1):2—27. doi: 10.1190/1.1440605
    [3] Virieux J.SH-wave propagation in heterogeneous media:velocity-stress finite-difference method[J].Geophysics,1984,49(11):1933—1942. doi: 10.1190/1.1441605
    [4] Virieux J.P-SV wave propagation in heterogeneous media.velocity-stress finite-difference method[J].Geophysics,1986,51(4):889—901. doi: 10.1190/1.1442147
    [5] Shortley G H,Weller R.Numerical solution of Laplace's equation[J].J Appl Phys,1938,9(5):334—348. doi: 10.1063/1.1710426
    [6] Jastram C,Tessmer E.Elastic modeling on a grid with vertically varying spacing[J].Geophys Prosp,1994,42(2):357—370. doi: 10.1111/j.1365-2478.1994.tb00215.x
    [7] Falk J.Tessmer E,Gajewski D.Tube wave modeling by the finite-differences method with varying grid spacing[J].Pure Appl Geophys,1996,148(3):77—93. doi: 10.1007/BF00882055
    [8] Tessmer E,Kosloff D,Behle A.Elastic wave propagation simulation in the presence surface topography[J].Geophys J Internat,1992,108(2):621—632. doi: 10.1111/j.1365-246X.1992.tb04641.x
    [9] Hestholm S O,Ruud B O.2-D finite-difference elastic wave modeling including surface topography[J].Geophys Prosp,1994,42(2):371—390. doi: 10.1111/j.1365-2478.1994.tb00216.x
    [10] Oprsal I,Jiri Zahradnik.Elastic finite-difference method for irregular grids[J].Geophysics,1999,64(1):240—250. doi: 10.1190/1.1444520
    [11] Moczo P.Finite-difference technique for SH-waves in 2-D media using irregular grids—application to the seismic response problem[J].Geophys J Internat,1989,99(1):321—329. doi: 10.1111/j.1365-246X.1989.tb01691.x
    [12] Pitarka A.3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing[J].Bull Seism Soc Am,1999,89(1):54—68.
    [13] SUN Wei-tao,YANG Hui-zhu.Elastic wavefield calculation for heterogeneous anisotropic porous media using the 3-D irregular-grid finite-difference[J].Acta Mechanica Solida Sinica,2003,16(4):283—299.
    [14] 孙卫涛,杨慧珠.各向异性介质弹性波传播的三维不规则网格有限差分方法[J].地球物理学报,2004,47(2):332—337.
    [15] Levander A R.Fourth-order finite-difference P-SV seismograms[J].Geophysics,1988,53(11):1425—1436. doi: 10.1190/1.1442422
    [16] Higdon R L.Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation[J].Mathematics of Computation,1986,47(141):437—459.
  • 加载中
计量
  • 文章访问数:  2687
  • HTML全文浏览量:  157
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-10-25
  • 修回日期:  2004-03-25
  • 刊出日期:  2004-07-15

目录

    /

    返回文章
    返回