留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类大阻尼非自治摆系统的周期解与混沌态

孙建华

孙建华. 一类大阻尼非自治摆系统的周期解与混沌态[J]. 应用数学和力学, 1988, 9(12): 1129-1137.
引用本文: 孙建华. 一类大阻尼非自治摆系统的周期解与混沌态[J]. 应用数学和力学, 1988, 9(12): 1129-1137.
Sun Jian-hua. Periodic Solution and Chaotic Behavior of a Class of Nonautonomic Pendulum Systems with Large Damping[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1129-1137.
Citation: Sun Jian-hua. Periodic Solution and Chaotic Behavior of a Class of Nonautonomic Pendulum Systems with Large Damping[J]. Applied Mathematics and Mechanics, 1988, 9(12): 1129-1137.

一类大阻尼非自治摆系统的周期解与混沌态

基金项目: 南京大学育苗科学基金资助

Periodic Solution and Chaotic Behavior of a Class of Nonautonomic Pendulum Systems with Large Damping

  • 摘要: 本文研究二阶非自治摆型系统的周期解的存在性和唯一性,并研究了φ(t)=1-ελcosωt,F(t)=β+εμ(cosωt-ωsinωt)a>0为大阻尼系数时该系统呈现混沌性态的参数区域.所得结果推广了文[1~8]中的相应结论.
  • [1] Sun Jian-hua. Chaotic motions of the pendulum systems, J. Nanjing University, Math. Biquarterly, 4. 1 (1987), 43-50. (in chinese)
    [2] 钱敏等,Josephson结的I-V曲线的理论分析,物理学报,36. 2 (1987),149-156.
    [3] 王荣良,调频输入正弦锁相环路的研究,工程数学学报,3. 2 (1986),142-144.
    [4] Sansone, G. and R. Conti, Nonlinear Differential Equation, Pergamon Press (1964).
    [5] Bcasley, M.R. and B.A. Huberman, Chaos in Joscphson junctions, Comm. Sol. Sta. Phys., 10 (1982), 155-162.
    [6] Ben-Jacob, E., et al., Intermittent chaos in Josephson junctions, Phys. Rev. Lutt., 49 (1982), 1599-1602.
    [7] Cirillo, M. and N.F. Pederson, On bifurcations and transition to chaos in a Josephson junctions, Phys, Lett, 90A (1982). 150-152.
    [8] Guckcnhcimer J. and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag (1983).
    [9] Lasalle. J.I. and S, Lefsechetz, Stability by Lyapunov's Direct Method with Application. New York, Academic Press (1961).
  • 加载中
计量
  • 文章访问数:  1744
  • HTML全文浏览量:  96
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  1987-08-04
  • 刊出日期:  1988-12-15

目录

    /

    返回文章
    返回