留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析

李晶晶 程昌钧

李晶晶, 程昌钧. 考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析[J]. 应用数学和力学, 2004, 25(8): 801-808.
引用本文: 李晶晶, 程昌钧. 考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析[J]. 应用数学和力学, 2004, 25(8): 801-808.
LI Jing-jing, CHENG Chang-jun. Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects[J]. Applied Mathematics and Mechanics, 2004, 25(8): 801-808.
Citation: LI Jing-jing, CHENG Chang-jun. Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects[J]. Applied Mathematics and Mechanics, 2004, 25(8): 801-808.

考虑高阶横向剪切正交各向异性板非线性弯曲的微分求积分析

基金项目: 上海市重点学科建设项目
详细信息
    作者简介:

    李晶晶(1963- ),女,长沙人,讲师,博士;程昌钧(联系人.Tel:+86-21-56331454;E-mail:chjcheng@mail.shu.edu.cn).

  • 中图分类号: O343.8

Differential Quadrature Method for Bending of Orthotropic Plates With Finite Deformation and Transverse Shear Effects

  • 摘要: 采用微分求积方法(DQ方法)讨论了计及高阶横向剪切的正交各向异性弹性板的非线性弯曲问题.导出了非线性控制方程的DQ形式,利用推广的DQWB技巧处理了高阶矩的边界条件.进一步推广并运用新的分析技术简化了非线性方程的计算.为说明该方法的可靠性和有效性,将考虑剪切变形及不计剪切变形的薄板的数值结果与三维弹性解析解及其它数值解进行了比较,同时研究了数值结果的收敛性,并考察了不同的节点分布对收敛速度的影响A·D2还考察了几何、材料参数及横向剪切效应对正交各向异性板非线性弯曲的影响.分析结果表明横向剪切效应对正交各向异性中厚板的影响是显著的.
  • [1] Chia C Y.Geometrically nonlinear behavior of composite plate: a review[J].Applied Mechanics Reviews,1988,41(2):439—451. doi: 10.1115/1.3151873
    [2] Reddy J N.A refined nonlinear theory of plates with transverse shear deformation[J].Internat J Solids and Structures,1984,20(9/10):881—896. doi: 10.1016/0020-7683(84)90056-8
    [3] Reddy J N.Mechanics of Laminated Composite Plates[M].New York:CRC-Press,1997.
    [4] Shen H S.Nonlinear bending of shear deformable laminated plates under transverse and in-plane loads and resting on elastic foundations[J].Comput Struct,2000,50(2):131—142. doi: 10.1016/S0263-8223(00)00088-X
    [5] Shen H S.Postbuckling of shear deformable laminated plates under biaxial compression and lateral pressure and resting on elastic foundations[J].Int J Mech Sci,2000,42(6):1171—1195. doi: 10.1016/S0020-7403(99)00044-2
    [6] Bellmam R E,Casti J. Differential quadrature and long term integration[J].J Math Anal Appl,1971,34(2):235—238. doi: 10.1016/0022-247X(71)90110-7
    [7] Bert C W, Malik M. Differential quadrature method in computational mechanics: a review[J].Applied Mechanics Reviews,1996,49(1):1—28. doi: 10.1115/1.3101882
    [8] Bert C W, Striz A G, Jang S K. Nonlinear bending of analysis of orthotropic rectangular plates by the method of differential quadrature[J].Comput Mech,1989,5(2):217—226. doi: 10.1007/BF01046487
    [9] Chen W, Shu C, He W,et al. The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates[J].Comput Struct,2000,74(1):65—76. doi: 10.1016/S0045-7949(98)00320-4
    [10] Wang X, Bert C W.A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates[J].J Sound Vibration,1993,162(3):566—572. doi: 10.1006/jsvi.1993.1143
    [11] Wang X, Bert C W. Differential quadrature analysis of deflection, buckling and free vibration of beams and rectangular plates[J].Comput Struct,1993,48(3):473—479. doi: 10.1016/0045-7949(93)90324-7
    [12] LI Jing-jin, CHENG Chang-jun.Differential quadrature method for bending problem of plates with transverse shear effects[J].Journal of Shanghai University,2003,7(3):228—233. doi: 10.1007/s11741-003-0029-4
    [13] Lancaster P, Timenetsky M. The Theory of Matrices With Applications[M].2nd ed. Orlando, FL:Academic Press,1985.
    [14] Bert C W, Wang X, Striz A G.Differential quadrature for static and free vibrational analyses of anisotropic plates[J].Int J Solids Struct,1993,30(13):1737—1744. doi: 10.1016/0020-7683(93)90230-5
  • 加载中
计量
  • 文章访问数:  2709
  • HTML全文浏览量:  127
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-03-10
  • 修回日期:  2004-04-16
  • 刊出日期:  2004-08-15

目录

    /

    返回文章
    返回