留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期分岔解的鲁棒控制

梁建术 陈予恕 梁以德

梁建术, 陈予恕, 梁以德. 周期分岔解的鲁棒控制[J]. 应用数学和力学, 2004, 25(3): 239-246.
引用本文: 梁建术, 陈予恕, 梁以德. 周期分岔解的鲁棒控制[J]. 应用数学和力学, 2004, 25(3): 239-246.
LIANG Jian-shu, CHEN Yu-shu, Andrew Y. T. Leung. Robust Control of Periodic Bifurcation Solutions[J]. Applied Mathematics and Mechanics, 2004, 25(3): 239-246.
Citation: LIANG Jian-shu, CHEN Yu-shu, Andrew Y. T. Leung. Robust Control of Periodic Bifurcation Solutions[J]. Applied Mathematics and Mechanics, 2004, 25(3): 239-246.

周期分岔解的鲁棒控制

基金项目: 国家自然科学基金资助项目(19990510);国家重点基础研究专项经费资助项目(G1998020316);博士点基金资助项目(D09901;D0200201)
详细信息
    作者简介:

    梁建术(1963- ),男,河北人,博士(联系人.Tel:86-311-7813895(h),13930185695;E-mail:js1iang@eyou.com).

  • 中图分类号: O332;O231

Robust Control of Periodic Bifurcation Solutions

  • 摘要: 根据C-L方法,可以得到非线性动力系统的分岔方程和拓扑分岔图.根据得到的分岔图,结合控制理论,提出了周期解的鲁棒控制方法.该方法将运动模式控制到目标模式.由于该方法对控制器的参数没有严格的控制,所以在设计和制造控制器方面是很方便的.数值研究验证了该方法的有效性.
  • [1] Krylov N,Bogoliubov N.Les methods de la mecarique nonlinear[J].Monographie.Chaire de la Phys and Math of Academic Science.U K,1934,8:44—51.
    [2] CHEN Yu-shu,Langford W F.The subharmonic bifurcation solution of nonlinear Mathieu's equation and Euler dynamically bucking problem[J].Acta Mech Sinica,1988,20(4):522—532.
    [3] Yu P,Huseyin K.Parametrically exited nonlinear systems:a comparison of certain methods[J].Int J Non-Linear Mechanics,1998,33(6):967—978. doi: 10.1016/S0020-7462(97)00061-9
    [4] Chow S Y,Hale J K.Methods of Bifurcation Theory[M].New York:Springer,1982.
    [5] Golubisky M,Schaeffer D G.Singularities and Groups in Bifurcan'on Theory(Vol.[STHZ]. 1[STBZ]. )[M].New York:Springer,1985.
    [6] Bogoliubov N,Mitropolsky Y A.Asymptotic Methods in the Theory of Nonlinear Oscillations[M].New York:Gordon & Breach,1961.
    [7] Nayfeh A H,Mook D T.Nonlinear Osci Uations[M].New York:Wiley,1979.
    [8] Abed E H,Wang H O,Chen R C.Stabilization of period doubling bifurcation and implications for control of chaos[J].Physica D,1994,70(1):154—164. doi: 10.1016/0167-2789(94)90062-0
    [9] Wang H O,Abed E H.Bifurcation control of a chaotic system[J].Automatica,1995,31(9):1213—1226. doi: 10.1016/0005-1098(94)00146-A
    [10] Kang W.Bifurcation and normal form of nonlinear control systems—Parts Ⅰand Ⅱ[J].SIAM J Contr Optim,1998.36(1):193—232.
    [11] Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific Pub Co,1998.
    [12] Abed E H.Bifurcation-theoretic issues in the control of voltage collapse[A].In:Chow J H,Kokotovic P V,Thomas R J Eds.Proc IMA Workshop on Systems and Control Theory for Power Sys[C].New York:Springer,1995,1—21.
    [13] Chen G,Lu J,Yap K C.Controlling Hopf bifurcation[A].In:Ueta T,Chen G Eds.Proc Int Symp Circ Sys[C].3.USA:Monterey, C A,1998,693—642.
    [14] Basso M,Evangelisti A,Genesio R,et al.On bifurcation control in time delay feedback systems[J].Int J Bifur Chaos,1998,8(4):713—721. doi: 10.1142/S0218127498000504
    [15] Chen G.Controlling Chaos and Bifurcation in Engineering Systems[M].Boca Raton,FL:CRC Press,1999.
    [16] Chen G,Moiola J L,Wang H O.Bifurcation control:theories,methods and applications[J].Int J Bifur Chaos,2000,10(3):511—548.
    [17] CHEN Yu-shu,Leung Andrew Y T.Bifurcation and Chaos in Engineering[M].London:Springer,1998.
    [18] 陈予恕,杨彩霞,吴志强,等.具有平方、立方非线性项的耦合动力学系统1:2内共振分岔[J].应用数学和力学,2001,22(8):817—824.
    [19] LI Xin-ye,CHEN Yu-shu,WU Zhi-qiang,et al.Bifurcation of nonlinear normal modes of M-DOF systems with internal resonance[J].Acta Mechanica Sinica,2002,34(3):104—407.
    [20] Sundararajan P,Noah S.Dynamics of forced nonlinear systems using shooting arc length continuation method[J].ASME J Vib Acoustics,1995,119(1):9—20.
  • 加载中
计量
  • 文章访问数:  2783
  • HTML全文浏览量:  122
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-11-29
  • 修回日期:  2003-11-20
  • 刊出日期:  2004-03-15

目录

    /

    返回文章
    返回