液面的分叉与稳定性分析
Bifurcation and Stability Analysis for Liquid Surfaces
-
摘要: 本文讨论液体层在内聚力以及液体与外界相互作用下,其表面形状出现的一类分叉现象。利用分叉的基本理论,我们得到了这类现象产生的必要条件。接着,我们给出了在分叉点附近的奇异摄动解。最后,利用极小势能原理讨论了分叉解的稳定性。Abstract: A more comprehensive discussion on the bifurcation problems for the shape of liquid surfaces is made in this paper. The necessary conditions for bifurcation are given, and the bifurcating solutions near bifurcation points can be obtained by perturbation technique. Finally the stability of the bifurcating states is analyzed by means of the principle of minimum potential energy.
-
[1] Fusco,G.,An example of bifurcation in hydrodynamics,Nonlinear Differential Equations:Invariance.Stability,and Bifurcation,ed.by P.De Mottoni and L.Salvadori,Academic Press(1981),145-159. [2] Crandall,M.G.and P.H.Rabinowitz,Bifurcation from simple eigenvalues,J Funa Anal.,8(1971),321-340. [3] Sattinger D.H.,Topics in Stability and Bifurcation Theory,Springer-Verlag (1976). [4] Chow.S.N.and J.K.Hale,Methods of Bifurcation Theory,Springer-Verlag (1982). [5] Crandall,M.G.and P.H.Rabinowitz,Bifurcation,perturbation of simple eigenvalues,and linearized stability,Arch.Rat.Mech.Anal.,52 (1973),161-180. [6] Weinberger.H.F.,On the stabillty of bifurcating solution,Nonlinear Analysis,ed.by L.Cesari et al.,Academic Press (1978),219-233.
计量
- 文章访问数: 1708
- HTML全文浏览量: 88
- PDF下载量: 442
- 被引次数: 0