奇点附近的各向异性塑性应力场
Anisotropic Plastic Stress Field Near a Singular Point
-
摘要: 在奇点附近的理想塑性应力分量都只是θ的函数的条件下,利用平衡方程和Hill各向异性屈服条件,本文导出了反平面应变和平面应变两者奇点附近的各向异性塑性应力场的一般解析表达式。将这些一般解析表达式用于具体裂纹及有奇点的平面应变体,我们就得到Ⅰ型、Ⅱ型、Ⅲ型和Ⅰ-Ⅱ复合型裂纹尖端的各向异性塑性应力场以及有奇点的各向异性塑性平面应变体的极限载荷。Abstract: On condition that any perfectly plastic stress component near a singular point is nothing but the function of θ only, making use of equilibrium equations and Hill anisotropic yield condition, we derive the general analytical expressions of the anisotropic plastic stress field near a singular point in both the cases of anti-plane and in-plane strains. Applying these general analytical expressions to the concrete cracks and the plane-strain bodies with a singular point, the anisotropic plastic stress fields at the tips of Mode Ⅰ, Mode Ⅱ, Mode Ⅲ and mixed mode Ⅰ-Ⅱ cracks, and the limit loads of anisotropic plastic plane-strain bodies with a singular point are obtained.
-
[1] 林拜松,静止裂纹尖端的理想塑性应力场,应用数学和力学,6, 5 (1985), 416-421. [2] 林拜松,高速扩散裂纹尖端的理想弹塑性场,应用数学和力学,6, 10 (1985), 939-946. [3] Hill, R,The Mathematical Theory of Plasticity, Oxford (1950). [4] hachanov, L.M.,Foundation of the Theory of Plasticity, London (1971).
计量
- 文章访问数: 1849
- HTML全文浏览量: 99
- PDF下载量: 611
- 被引次数: 0