Impulsive Control of Chaotic Attractors in Nonlinear Chaotic Systems
-
摘要: 在国内外研究工作的基础上,给出了一类非线性混沌系统混沌吸引子的冲击控制方案,运用普适方程的冲击控制理论导出了这类混沌系统混沌吸引子的冲击控制渐进稳定的条件,利用这一条件给出了混沌吸引子渐进稳定冲击控制的区间上界,最后给出了许多数据结果,这些结果对于混沌吸引子的控制将有重要的参考价值.Abstract: Based on the study both domestic and abroad,an impulsive control scheme on chaotic attractors in one chaotic system was presented.By applying impulsive control theory of the universal equation,the asymptotically stable condition of impulsive control on chaotic attractors in such nonlinear chaotic system was deduced,and with it,the upper bond of the impulse interval for asymptotically stable control was given.Numerical results are presented which are considered with important reference value for control of chaotic attractors.
-
Key words:
- impulsive control /
- chaotic attractor /
- chaos /
- asymptotically stable
-
[1] Ott E,Grebogi C,Yorke J A.Chaos controlling[J].Phys Rev Lett,1990,64(11):1196—1199. doi: 10.1103/PhysRevLett.64.1196 [2] Pecora L M,Carroll T L.On the control and synchronization of chaos[J].Phys Rev Lett,1990,64(7):821—827. doi: 10.1103/PhysRevLett.64.821 [3] Ramirez Avila G M,Guisset J L,Deneubourg.Synchronization in light-controlled oscillators[J].Phys D,2003,182(4):254—273. doi: 10.1016/S0167-2789(03)00135-0 [4] Chin Yi Chee,XU Dao-lin.Control of the formation of projective synchronisation in lower-dimensional discrete-time systems[J].Phys Lett A,2003,318(12):112—118. doi: 10.1016/j.physleta.2003.09.024 [5] Stojanovski T,Kocarev L,Parlitz U.Driving and synchronizing by chaotic impulses[J].Phys Rev E,1996,54(2):2128—2131. doi: 10.1103/PhysRevE.54.2128 [6] ZHU Jian-dong,TIAN Yu-ping.Nonlinear recursive delayed feedback control for chatoic discrete-time systems[J].Phys Lett A,2003,310(2):295—300. doi: 10.1016/S0375-9601(03)00369-4 [7] YANG Tao,YANG Lin-bao,YANG Chun-mei.Impulsive synchronization of Lorenz systems[J].Phys Lett A,1997,226(6):349—354. doi: 10.1016/S0375-9601(97)00004-2 [8] 胡海岩.力学系统混沌的主控控制[J].力学进展,1996,26(4):453—463. [9] 陈立群,刘曾荣.一类超混沌离散系统的控制[J].应用数学和力学2001,22(7):661—665. [10] 马军海,陈予恕.一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅰ)[J].应用数学和力学,2001,22(11):1119—1128. [11] 马军海,陈予恕.一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究(Ⅱ)[J].应用数学和力学,2001,22(12):1236—1242.
计量
- 文章访问数: 3078
- HTML全文浏览量: 144
- PDF下载量: 626
- 被引次数: 0