留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴拉伸条件下细观非均匀性岩石损伤局部化和应力应变关系分析

周小平 王建华 张永兴 哈秋聆

周小平, 王建华, 张永兴, 哈秋聆. 单轴拉伸条件下细观非均匀性岩石损伤局部化和应力应变关系分析[J]. 应用数学和力学, 2004, 25(9): 943-950.
引用本文: 周小平, 王建华, 张永兴, 哈秋聆. 单轴拉伸条件下细观非均匀性岩石损伤局部化和应力应变关系分析[J]. 应用数学和力学, 2004, 25(9): 943-950.
ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading[J]. Applied Mathematics and Mechanics, 2004, 25(9): 943-950.
Citation: ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading[J]. Applied Mathematics and Mechanics, 2004, 25(9): 943-950.

单轴拉伸条件下细观非均匀性岩石损伤局部化和应力应变关系分析

基金项目: 国家自然科学基金资助项目(59879012;59649008)
详细信息
    作者简介:

    周小平(1970),男,江西瑞金人,博士,副教授(联系人.Tel:+86-23-65405987;Fax:+86-23-65121982;E-mail:zhouxiaopinga@sina.com).

  • 中图分类号: TU45

Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Rock Under Uniaxial Tensile Loading

  • 摘要: 岩石在拉应力状态下的力学特性不同于压应力状态下的力学特性.利用细观力学理论研究了细观非均匀性岩石拉伸应力应变关系包括:线弹性阶段、非线性强化阶段、应力降阶段、应变软化阶段.模型考虑了微裂纹方位角为Weibull分布和微裂纹长度的分布密度函数为Rayleigh函数时对损伤局部化和应力应变关系的影响,分析了产生应力降和应变软化的主要原因是损伤和变形局部化.通过和实验成果对比分析验证了模型的正确性和有效性.
  • [1] Nova R, Zaninetti A. An investigation into the tensile behavior of a Schistose rock[J].Int J Rock Mech Sci Geomech Abstr,1990,27(4):231—242.
    [2] Okubo S, Jin F, Akiyama M. Loading-rate dependency of uniaxial and indirect tensile strength[J].Journal of the Mining and Materials Processing Institute of Japan,1993,109(11):865—869. doi: 10.2473/shigentosozai.109.865
    [3] Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension[J].International Journal of Rock Mechanics and Mining Sciences,1996,33(6):549—556. doi: 10.1016/0148-9062(96)00024-1
    [4] 金丰年.岩石的非线性流变[M].南京:河海大学出版社,2001.
    [5] Simo J C, Ju J W.Strain-and stress-based continuum damage models [J].Int J Solids Struct,1987,23(7):821—840. doi: 10.1016/0020-7683(87)90083-7
    [6] Ortiz M. A constitutive theory for the inelastic behavior of concrete[J].Mech Mater,1985,4(1):67—93. doi: 10.1016/0167-6636(85)90007-9
    [7] Budiansky B, O'Connell R J. Elastic moduli of a cracked solids[J].Int J Solids Struct,1976,12(2):81—79. doi: 10.1016/0020-7683(76)90044-5
    [8] Sumarac D, Krajcinovic D. Self-consistent model for microcrack-weakened solids[J].Mechanics of Materials,1987,6(1):39—52. doi: 10.1016/0167-6636(87)90021-4
    [9] Ju J W. On two-dimensional self-consistent micromechanical damage models for brittle solids[J].International Journal of Solids and Structures,1991,27(2):227—258. doi: 10.1016/0020-7683(91)90230-D
    [10] ZHOU Xiao-ping.Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading[J].International Journal of Solids and Structures,2004,41(5/6):1725—1738. doi: 10.1016/j.ijsolstr.2003.07.007
    [11] FENG Xi-qiao,YU Shou-wen.Micromechanical modelling of tensile response of elastic-brittle material[J].International Journal of Solids and Structures,1995,32(22):3359—3372. doi: 10.1016/0020-7683(94)00305-G
  • 加载中
计量
  • 文章访问数:  2394
  • HTML全文浏览量:  110
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-07-15
  • 修回日期:  2004-03-15
  • 刊出日期:  2004-09-15

目录

    /

    返回文章
    返回