留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压应力状态下细观非均匀性岩石的损伤局部化和应力应变关系分析

周小平 张永兴 哈秋聆 王建华

周小平, 张永兴, 哈秋聆, 王建华. 压应力状态下细观非均匀性岩石的损伤局部化和应力应变关系分析[J]. 应用数学和力学, 2004, 25(9): 951-957.
引用本文: 周小平, 张永兴, 哈秋聆, 王建华. 压应力状态下细观非均匀性岩石的损伤局部化和应力应变关系分析[J]. 应用数学和力学, 2004, 25(9): 951-957.
ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Brittle Rock Subjected to Compressive Loads[J]. Applied Mathematics and Mechanics, 2004, 25(9): 951-957.
Citation: ZHOU Xiao-ping, WANG Jian-hua, ZHANG Yong-xing, HA Qiu-ling. Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Brittle Rock Subjected to Compressive Loads[J]. Applied Mathematics and Mechanics, 2004, 25(9): 951-957.

压应力状态下细观非均匀性岩石的损伤局部化和应力应变关系分析

基金项目: 国家自然科学基金资助项目(59879012;59649008)
详细信息
    作者简介:

    周小平(1970- ),男,江西瑞金人,博士,副教授(联系人.Tel:+86-23-65405987;Fax:+86-23-65121982;E-mail:zhouxiaopinga@sina.com).

  • 中图分类号: TU45

Analysis of the Localization of Damage and the Complete Stress-Strain Relation for Mesoscopic Heterogeneous Brittle Rock Subjected to Compressive Loads

  • 摘要: 利用摩擦弯折裂纹模型研究了受压条件下细观非均匀性岩石的损伤局部化问题和全过程应力应变关系.模型考虑了裂纹相互作用对损伤局部化和全过程应力应变关系的影响,确定了损伤局部化发生的条件,分析了产生损伤局部化的原因.研究表明全过程应力应变关系包括线弹性阶段、非线性强化阶段、应力降和应变软化阶段.通过和实验对比分析验证了模型的正确性和有效性.
  • [1] Simo J C, Ju J W. Strain-and stress-based continuum damage models[J].Internat J Solids and Structures,1987,23(7):821—840. doi: 10.1016/0020-7683(87)90083-7
    [2] Ortiz M. A constitutive theory for the inelastic behavior of concrete[J]. Mech Mater,1985,4(1):67—93. doi: 10.1016/0167-6636(85)90007-9
    [3] Ju J W.On two-dimensional self-consistent micromechanical damage models for brittle solids[J].Internat J Solids and Structures,1991,27(2):227—258. doi: 10.1016/0020-7683(91)90230-D
    [4] Nemat-Nasser S, Horii H. Compression induced microcrack growth in brittle solids: axial splitting and shear failure[J].Journal of Geophysics Research,1985,90(B4):3105—3125. doi: 10.1029/JB090iB04p03105
    [5] Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive states[J].Acta Metallica,1986,34(3):497—510. doi: 10.1016/0001-6160(86)90086-6
    [6] Kachanov M. A microcrack model of rock inelasticity—Part Ⅰ: frictional sliding on microcracks[J].Mechanics of Materials,1982,1(1):19—27. doi: 10.1016/0167-6636(82)90021-7
    [7] Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle materials[J].Journal of Applied Mechanics,1988,55(1):24—35. doi: 10.1115/1.3173647
    [8] Basista M, Gross D. The sliding crack model of brittle deformation:an internal variable approach[J].Internat J Solids and Structures,1998,35(5/6):487—509. doi: 10.1016/S0020-7683(97)00031-0
    [9] Okubo S,Nishimatsu Y,He C. Loading rate dependence of class Ⅱ rock behavior in uniaxial and triaxial compression tests-an application of a proposed new control method[J].Internat J Rock Mech Min Sci & Geomech Abstr,1990,27(6):559—562.
    [10] Rice J R. Inelastic constitutive relations for solids :an internal-variable theory and its application to metal plasticity[J].Journal of the Mechanics and Physics of Solids,1971,19(6):433—455. doi: 10.1016/0022-5096(71)90010-X
    [11] ZHOU Xiao-ping,HA Qiu-lin,ZHANG Yong-xing,et al.Analysis of the deformation localization and the complete stress-strain relation for brittle rock subjected to dynamic compressive loads[J].Internat J Rock Mech Min Sci,2004,41(2):311—319. doi: 10.1016/S1365-1609(03)00094-7
    [12] Tada H, Paris P C, Irwin G R.The Stress Analysis of Cracks Handbook[M].St Louis Ed.Paris:Paris Production Incorporated,1985.
  • 加载中
计量
  • 文章访问数:  2489
  • HTML全文浏览量:  134
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-11-15
  • 修回日期:  2004-03-15
  • 刊出日期:  2004-09-15

目录

    /

    返回文章
    返回