留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Четаев型非完整力学系统的微分几何原理

赵世鹰

赵世鹰. Четаев型非完整力学系统的微分几何原理[J]. 应用数学和力学, 1986, 7(9): 847-860.
引用本文: 赵世鹰. Четаев型非完整力学系统的微分几何原理[J]. 应用数学和力学, 1986, 7(9): 847-860.
Zhao Shi-ying. The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type[J]. Applied Mathematics and Mechanics, 1986, 7(9): 847-860.
Citation: Zhao Shi-ying. The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type[J]. Applied Mathematics and Mechanics, 1986, 7(9): 847-860.

Четаев型非完整力学系统的微分几何原理

The Differentia, Geometric Principle of the Nonholonomic Mechanical Systems of Chetaev’s Type

  • 摘要: 本文应用现代微分几何的方法研究Четаев型非完整力学系统.通过恰当地定义Четаев型约束Pfaff系统,给出了非完整力学系统的微分几何结构,从而将带有非完整约束的Lagrange方程表达为一种与坐标无关的不变形式,并且采用这个新观点讨论了约束的嵌入和非完整力学系统的守恒定律等问题,得到了约束子流形上的Noether型定理.
  • [1] Abraham,,R.and J.E.Marsden,Foundations of Mechanics(2nd ed.),Benjamin/Curmming,Reading,MA(1978).
    [2] Masden,J.E.and T.J.R.Hughes,Mathematical Foundations of Elasticity,Prentice-Hall,Inc,Englewood Cliffs,N.J.(1983).
    [3] Bleecker,D.Gauge Theory and Varational Principles,Addison-Wesley Pub.Com,Inc,Massachusetts(1981).
    [4] Hermann,R.,Geometry,Physics and Systems,Dekker,New York(1973).
    [5] Edelen,D.G.B.,Lagrangian Mechanics of Nonconservative Nonholonomic Systems,Noordhoff,Leyden(1977).
    [6] Hermann,R.,The Differential geometric structure of general mechanical systems from the Lagrangian point of view,J.Math.Phys.,23(1982),2077-2089.
    [7] Langlois,M.,Sur la Mecanique analytique du corps solie et des systemes non holonomes a liaisons du type chetaev,These de Doctorat d'Etat,Besancon,France(1982).
    [8] Ghori,Q.K.and M.Hussain,Poincaré equations for nonholonomic dynamical systems,ZAMM,53(1973),391-396.
    [9] Cantrijin,F.,Vector fields generating invariants for classical dissipative systems,J.Math.Phys.,23(1982),1589-1595.
    [10] Garia,P.L,The Poincaré-Cardan invariant in the calculus variations,Symp.Math.,14(1974),219-246.
    [11] Poincare,H,Sur une forme nouvelle des equations de la mecanique,Comp.Rend.Acad.Sci.,132(1901),360-371.
    [12] Четаеъ Н.Г.,Об уравнениях пуанкаре,ПММ,5(1941),243-252.(in Russian),
    [13] Румянцев В.В.,Об интегральных принципах для неголономных систем,ПММ,46(1982).3-12.
    [14] Chetaev,N.G.,on Gauss principle,Lzv.Fiziko-Mat.Obshch.,6(1933),68-71.(in Rursian)
    [15] Mei Feng Xang,Nouvelles equations du mouement des systemes mecaniques nonholonomic,These de Doctorat d'Etat,Nantes,France(1982).
    [16] NOether,E.,Invariante variationsprobleme,Ges.Wiss.Goettingen,2(1981),235-257.
    [17] Sarlet,W.and F.Cantrijn,Generalization of Noether's tneorem in classical mechanics,SIAM Rew.,23(1981),467-494.
    [18] Ghori,Q.K.,Conservation laws for dynamical systems in Poincare-Chetaev variables,Arch.Rat.Mech.Ana.64(1977),327-337.
    [19] Diukic,Dj.S.,Conservation laws in classical mechanics for quasi-coordinates,Arch.Rat.Mech.Ana.56(1974),79-98.
    [20] Козлов В.В.и Н.Н.Колеоников,Отеоремахцинамики,ПММ,42(1978),28-33.
  • 加载中
计量
  • 文章访问数:  1973
  • HTML全文浏览量:  96
  • PDF下载量:  1030
  • 被引次数: 0
出版历程
  • 收稿日期:  1985-07-03
  • 刊出日期:  1986-09-15

目录

    /

    返回文章
    返回