关于半线性热方程的防爆与防熄问题
On the Problem of Preventing Blowing-up and Quenching for Semilinear Heat Equation
-
摘要: 本文研究初值问题ut=Δu+g(t)f(u)(t>0),u|t=0=u0(x)和初边值问题ut=Δu+g(t,x)f(u)(t>0,x∈Ω),u|t=0=u|∂Ω=0之解的整体存在性。如文献[6]中所作的那样,在非线性项中引进因子g(t)或g(t,x),是为了防止解的爆破或熄灭现象发生。本文的结果表明,文献[6]的两个定理中对f,g和u0的大部分限制可以取消或者减弱;对g可以只要求它在f大时充分小;在一定条件下,控制初始状态即可避免爆破。Abstract: In this paper, the global existence of solutions to the IVP ut=Δu+g(t)f(u)(t>0),u|t=0=u0(x)and the IBVP ut=Δu+g(t,x)f(u)(t>0,x∈Ω),u|t=0=u|∂Ω=0is investigated, As has been done in[6],the introduction of factors g(t) or g(t,x) in nonlinear term is to prevent the occurrence of blowing-up or quenching of solutions, It is shown in this paper that most of the restrictions on f, g and u0 in the theorems of [6] may be cancelled or relaxed,that the smallness of g is required only fortlarge,and that under certain conditions controlling initial state can avoid blowing-up.
-
[1] Kaplan, S,On the growth of solutions of quasi-linear parabolic equations, Comm,Pure Appl, Math,1g (1983),305-330. [2] Fujita, H,On the blowing up of solutions of the Cauchp problem for ut=Δu+u1+u,J.Fac, Sci, Univ, Tokpo, Sect, I,13(1966),109-124. [3] Hayakawa, K,On nonexistence of global solutions of some semilinear parabolic differential equations, Proc, Jopan Acad,49(1973),503-505. [4] Kawarada, H,On solutions of initial-boundary problem for ut=uxx+1/(1-u),Publ,RIMS,Kyoto Univ,10 (1975),729-736. [5] Acker, A, and W, Walter, The quenching problem for nonlinear parabolic differential equations, Lect, Notes in Math,Springer-Vcrlag,1-2(1976),564. [6] 陈庆益,关于半线性热方程的爆破及熄灭问题,数学物理学报,2 (1982),17-23. [7] Fife,P, C,Mathematical aspects of reacting and diffusing systems, Lect, Notes in Biomathematics,Springer-Verlag(1979),28. [8] Weissler,F. B,Existence and-nonexistence of global solutions for a semilinear heat equation,Isreal J.Math,38 (1981),29-40.
计量
- 文章访问数: 1988
- HTML全文浏览量: 95
- PDF下载量: 559
- 被引次数: 0