留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fitzhugh神经传导方程的张弛振动解

林常 李继彬 刘曾荣

林常, 李继彬, 刘曾荣. Fitzhugh神经传导方程的张弛振动解[J]. 应用数学和力学, 1985, 6(12): 1079-1086.
引用本文: 林常, 李继彬, 刘曾荣. Fitzhugh神经传导方程的张弛振动解[J]. 应用数学和力学, 1985, 6(12): 1079-1086.
Lin Chang, Li Ji-bin, Liu Zeng-rong. The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1079-1086.
Citation: Lin Chang, Li Ji-bin, Liu Zeng-rong. The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1079-1086.

Fitzhugh神经传导方程的张弛振动解

The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation

  • 摘要: 本文用匹配渐近法,计算了Fitzhugh神经传导方程张弛振动解的解析表达式、振动周期,给出了产生张弛振动的参数区域.
  • [1] Fitzhugh,R.,Thresholds and plateaus in the Hodgkin-Huxley nerve equations,J.Gen.Phys.,43(1960).
    [2] Troy,W.C.,Bifurcation phenomena in Fitzhugh's nerve conduction equation,J.Math.Anal.Appl.,54(1976),678-690.
    [3] Hsü,I.D.and N.D.Kazarinoff,An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model,J.Math.Anal.Appl.,55(1976),61-89.
    [4] Hsü,I.D.,A higher order Hopf bifurcation formula and its application to Fitzhugh's nerve conduction equations,J.Math.Anal.Appl.,60,1(1977),47-57.
    [5] Hadeler,K.P.,etc.,Generation of the nervous impulse and periodic oscillations,Biol.Cybernet.,23(1976),211-218.
    [6] G(?)bber,F.and K.D.Willamowski,Liapunov approach to multiple Hopf bifurcation,J Math.Anal.Appl.,71(1979),333-350.
    [7] Negrini,P.and L.Salvadori,Attraction and Hopf bifurcation,Nonlinear Analysis,3,1(1979),87-99.
    [8] Okuda,M.,A new method of nonlinear analysis for threshold and shaping actions in transient states,Prog.Theory Phys.,66,1(1981),90-100.
  • 加载中
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  110
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  1984-11-14
  • 刊出日期:  1985-12-15

目录

    /

    返回文章
    返回