波动方程的边界单元法
The Boundary Element Method (BEM) for Wave Equation
-
摘要: 本文从三维波动方程的Kirchhoff积分公式出发,首先经离散化给出无限均匀介质中的边界单元法公式.其后,在引入了波在不同介质面和自由面上的反射、折射系数以后,给出了三维波动方程在分区均匀介质中的边界单元法公式.Abstract: The formula of BEM suited to solve the problems of wave propagation in boundless medium is obtained from numerical treatment of Kirchhoff integral equation. After quoting the coefficients of refraction and reflection of wave at surface or interface, the expression of BEM which is suitable for the problems of wave propagation in multi-isotropic mediums is also given.
-
[1] Brebbia,C.A.,The Boundary Element Method for Engineers,Pentech Press,London,Halstead,New York(1978). [2] Cruse,T.A.(Ed.)and F.J.Rizzo(Co-Ed),Boundary-Integral Equation Method:Computational Applications in Applied Mechanics,Presented at 1975 Applied Mechanics Conference,The Rensselaer Polytechnic Institute,Troy,New York,June(1975),23-25. [3] Brebbia,C.A.,Introductory remarks,boundary element methods,Proceedings of the Third International Seminar,Editor:C.A.Brebbia,Irrine,California,July(1981). [4] 钱伟长、叶开沅,《弹性力学》,科学出版社(1956). [5] M.巴特著(瑞典),《地震学的数学问题》,科学出版社,郑治真译,朱传镇校(1976). [6] W.伊文等著,《层状介质中的弹性波》,刘光鼎译,王耀文校,科学出版社(1966).
计量
- 文章访问数: 1906
- HTML全文浏览量: 125
- PDF下载量: 561
- 被引次数: 0