Semi-Analytical Finite Element Method for Fictitious Crack Model in Fracture Mechanics of Concrete
-
摘要: 利用平面扇形域哈密顿体系的方程,通过分离变量法及共轭辛本征函数向量展开法,以解析的方法推导出基于混凝土断裂力学中虚拟裂缝模型的平面裂纹解析元列式.将该解析元与有限元相结合,构成半解析的有限元法,可求解任意几何形状和荷载混凝土平面裂纹的虚拟裂缝模型计算问题.数值计算结果表明方法对该类问题的求解是十分有效的,并有较高的精度.Abstract: Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.
-
[1] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976,6(6):773—782. doi: 10.1016/0008-8846(76)90007-7 [2] Bazant Z P,Oh B H. Crack band theory for fracture of concrete[J].RILEM, Materials and Structures,1983,16(93):155—177. [3] Jenq Y S, Shah S P. Two parameters fracture model for concrete[J].Journal of Engineering Mechanics,ASCE,1985,111(10):1227—1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227) [4] Karihaloo B L, Nallathambi P. Effective cracks model for the determination of fracture toughness (KsⅠc) of concrete[J].Engineering Fracture Mechanics,1990,35(4/5):637—645. doi: 10.1016/0013-7944(90)90146-8 [5] 徐世,赵国藩.混凝土结构裂缝扩展的与双K断裂准则[J].土木工程学报,1992,25(2):32—38. [6] XU Shi-lang,Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture—Part Ⅲ: Compact tension specimens and wedge splitting specimens[J].International Journal of Fracture,1999,98(2):179—193. doi: 10.1023/A:1018788611620 [7] 钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995. [8] 钟万勰.弹性平面扇形与问题及哈密顿体系[J].应用数学和力学,1994,15(12): 1057—1066. [9] 钟万勰,张洪武.平面断裂解析元的列式[J]. 机械强度, 1995,17(3):1—6. [10] 徐世,赵国藩.混凝土断裂力学研究[M]. 大连: 大连理工大学出版社,1991. [11] 袁建伟.混凝土Ⅰ型裂缝非线性断裂分析[D]. 硕士学位论文,大连:大连理工大学, 1988,85—164.
计量
- 文章访问数: 2060
- HTML全文浏览量: 107
- PDF下载量: 703
- 被引次数: 0