Kantorovich Theorem for Variational Inequalities
-
摘要: 将Kantorovich定理推广到变分不等式,从而使得Newton迭代的收敛性、问题解的存在唯一性均可通过初始点处的可计算的条件来判断.
-
关键词:
- 变分不等式 /
- Newton迭代 /
- 半局部收敛性 /
- Kantorovich定理
Abstract: Kantorovich theorem was extended to variational inequalities by which the convergence of Newton iteration, the existence and uniqueness of the solution of the problem can be tested via computational conditions at the initial point.-
Key words:
- variational inequality /
- Newton iteration /
- semilocal convergence /
- kantorovich theorem
-
[1] Eaves B C.A locally quadratically convergent algorithm for computing stationary point[R]. Department of Operations Research,Stanford University,1978. [2] Josephy N H.Newton's method for generalized equations[R]. Mathematics Research Center,University of Wisconsin,1979. [3] Harker P T,Pang J S.Finite-dimensional variational inequalities and non-linear complementarity problems:a survey of theory,algorithms and applications[J].Mathematical Programming,1990,48(2):161—220. doi: 10.1007/BF01582255 [4] Robinson S M.Generalized equations and their solutions[J].Mathematical Programming Study,1979,10(1):128—141. doi: 10.1007/BFb0120850 [5] Robinson S M.Strongly regular generalized equations[J].Mathematics of Operations Research,1980,5(1):43—62. doi: 10.1287/moor.5.1.43 [6] Kantorovich L V.Functional analysis and applied mathematics[J].Uspehi Mat Nauk,1948,3(6):89—185. [7] Ortega J M,Rheinboldt W C.Iterative Solutions of Nonlinear Equations in Several Variables[M].New York:Academic Press,1970. [8] Stampacchia G.Variational inequalities[A].In:Stampacchia G Ed.Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute[C].Venice:Edizioni Oderisi,Gubbio,1968,102—192. [9] Rall L B.Computational Solution of Nonlinear Operator Equations[M].New York:Wiely,1969. [10] Alefeld G E,Herzberger J.Introduction to Interval Computations[M].New York and London:Academic Press,1983.
计量
- 文章访问数: 2788
- HTML全文浏览量: 134
- PDF下载量: 732
- 被引次数: 0