留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维Navier-Stokes方程加罚有限元的共轭梯度法和分块迭代法

李开泰 黄艾香 李笃 刘之行

李开泰, 黄艾香, 李笃, 刘之行. 三维Navier-Stokes方程加罚有限元的共轭梯度法和分块迭代法[J]. 应用数学和力学, 1983, 4(6): 821-834.
引用本文: 李开泰, 黄艾香, 李笃, 刘之行. 三维Navier-Stokes方程加罚有限元的共轭梯度法和分块迭代法[J]. 应用数学和力学, 1983, 4(6): 821-834.
Li Kai-tai, Huang Ai-xiang, Li Du, Liu Zhi-xing. The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1983, 4(6): 821-834.
Citation: Li Kai-tai, Huang Ai-xiang, Li Du, Liu Zhi-xing. The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1983, 4(6): 821-834.

三维Navier-Stokes方程加罚有限元的共轭梯度法和分块迭代法

The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations

  • 摘要: 本文对Navier-Stokes问题加罚变分形成有限元解给出了共轭梯度算法和分块迭代算法,由于共轭梯度算法中,求解单变量极小值问题得到简化,使得计算时间大为节约. 本文还给出了计算实例.
  • [1] 李开泰、黄艾香、马逸尘、李笃、刘之行.Navier-Stokes问题加罚变分形式的最优控制有限元逼近.西安交通大学学报,16. 1(1982). 85-88.
    [2] 李笃,三维Navier-Stukes问题的共扼梯度法及数值试验.西安交通大学学报,16, 4 (1982),81-90.
    [3] 刘之行,三维Navier-Stokes问题加罚变分形式的分块迭代法及其应用程序,西安交通大学学报,16,4 (1982). 91-102.
    [4] Bristeau,M.O.,O.Pironneau,R.Glowinski,J.Periaux and P.Perrier,On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I):Least square formulation and conjugate gradient solution of the continuous problems,Comp.Math.Appl.Mech.Eng.(17)/(18),(1979),619-657.
    [5] Giraut,V.,and P.A.Raviart,Finite Element Approximation for the Navier-Stokes Equations,Lecture Notes in Mathematics,Vol.749,Springer-Verlag,Berlin,(1980).
    [6] Teman,R.,Navier-Stokes Equations,North-Holland,Amsterdam,(1977).
    [7] Reddy,J.N.,On the Mathematical Theory of the Penalty-Finite Elements for Navier-Stokes Equations,Proceedings of the Third International Conference onFinite Elements in Flow Problems,Vol.2,(1980)
    [8] Zienkiewicz,O.C.,Constrained Variational Principles and Penalty Function Methods in Finite Element Analysis,Lecture Notes in Mathematics,P.363(Edited by Dald and B.B.Eckman),Springer-Verlag,New York,(1974).
    [9] Falk,R.S.,and J.T.King,A penalty and extrapolation method for the stationary Stokes equations,SIAM.J.Numer.Anal 13(1979),814-829.
    [10] Bercoviex,M.,and M.Engelman,A finite element for the numerical solution of viscous incompressible flows,J.Comp.Phys.30(1979),181-201.
    [11] Hughes,T.J.R.,W.K.Liu and A.Brooks,Finite element analysis of incompressible viscous flows by the penalty function formulation,J.Comp.Phys.,30(1979) 1-60.
    [12] Song,Y.J.,J,T.Oden and N.Kikuchi,Discrete LBB-Conditions for RIP-Finite Element Methods,TICON Report,80-7(1980).
    [13] Oden,J.T.,RIP-Methods for Stokesian Flows,Finite Elements in Fluids,Vol.4,John Wiley Sons.
    [14] Oden,J.T.,Penalty Methods and Selective Reduced Integration for Stokesian Flow,Proceedings of the Third International Conference on Finite Elements in Flow Problems,Banff.Alberta,Canada,(1980),140-145.
    [15] Oden,J.T.,Penalty Finite Element Methods for Constrained Problems in Elasticity,Symposium on Finite Element Methods,Hefei, Anhui, China (1981).
  • 加载中
计量
  • 文章访问数:  1624
  • HTML全文浏览量:  68
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  1982-12-12
  • 刊出日期:  1983-12-15

目录

    /

    返回文章
    返回