留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用组合参数的神经网络结构损伤检测分析研究

唐和生 薛松涛 陈 王远功

唐和生, 薛松涛, 陈, 王远功. 采用组合参数的神经网络结构损伤检测分析研究[J]. 应用数学和力学, 2005, 26(1): 40-46.
引用本文: 唐和生, 薛松涛, 陈, 王远功. 采用组合参数的神经网络结构损伤检测分析研究[J]. 应用数学和力学, 2005, 26(1): 40-46.
TANG He-sheng, XUE Song-tao, CHEN Rong, WANG Yuan-gong. Analyses on Structural Damage Identification Based on Combined Parameters[J]. Applied Mathematics and Mechanics, 2005, 26(1): 40-46.
Citation: TANG He-sheng, XUE Song-tao, CHEN Rong, WANG Yuan-gong. Analyses on Structural Damage Identification Based on Combined Parameters[J]. Applied Mathematics and Mechanics, 2005, 26(1): 40-46.

采用组合参数的神经网络结构损伤检测分析研究

基金项目: 国家杰出青年科学基金资助项目(59925820)
详细信息
    作者简介:

    唐和生(1973- ),男,安徽安庆人,讲师,博士(E-mail:thstj@mail.tongji.edu.cn);王远功(联系人.Tel:+86-21-65982390;Fax:+86-21-65983410;E-mail:izumi@mail.tongji.edu.cn).

  • 中图分类号: TU973.2

Analyses on Structural Damage Identification Based on Combined Parameters

  • 摘要: 提出由结构前几阶固有频率变化率、频率变化比值和动柔度置信因子构成的组合参数作为神经网络的输入向量的方法进行结构损伤检测,全面分析了不同参数作为神经网络输入向量的损伤效果,利用数值模拟对悬臂梁、桁架结构进行分析,采用不同的输入参数进行比较.分析结果表明,采用组合参数训练的神经网络,对结构损伤位置和程度识别较采用单一参数具有更好的识别效果.
  • [1] Masri S F,Chassiakos A G,Caughey T K.Identification of nonlinear dynamic systems using neural networks[J].Journal of Applied Mechanics, ASME,1993,60(1):123—133. doi: 10.1115/1.2900734
    [2] Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computers and Structures,1992,42(4):649—659. doi: 10.1016/0045-7949(92)90132-J
    [3] Doebling S W,Farrar C R,Prime M B,et al.Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review[R]. Los Alamos National Laboratory Report LA-13070-MS, April 1996.
    [4] Hush D R,Horne B G.Process in supervised neural networks[J].IEEE Signal Processing Magazine,1993,10(1):8—39.
    [5] YUN Chung-bang,Eun Young Bahng.Substructural identification using neural networks [J].Computers & Structures,2000,77(1):41—52.
    [6] Bishop C M.Neural networks and their applications[J].Review of Scientific Instrumentation,1994,65(6):1803—1832. doi: 10.1063/1.1144830
    [7] Kaminski P C.The approximate location of damage through the analysis of natural frequencies with artificial neural networks[J].Journal of Process Mechanical Engineering,1995,209(2):117—123.
    [8] Fox C H.The location of defects in structures: a comparison of the use of natural frequency and mode shape data[A].In:Proceedings of the 10th international Modal Analysis Conference[C]. Schenectady, NY:Union College Press,1992,522—528.
    [9] 唐和生.结构损伤识别与信号处理[D].博士学位论文.上海:同济大学,2002.
    [10] Raghavendrachar M,Aktan A E.Flexibility of multi-reference impact testing for bridge diagnostics[J].Journal of Structure Engineering,1992,118(8):2186—2203. doi: 10.1061/(ASCE)0733-9445(1992)118:8(2186)
    [11] Zhao J,DeWolf T.Sensitivity study for vibration parameters used in damage detection[J].Journal of Structural Engineering,1999,125(4):410—416. doi: 10.1061/(ASCE)0733-9445(1999)125:4(410)
    [12] The Mathworks.Neural Network Toolbox User's Guide[M].Boston:Mathworks Inc,1994.
  • 加载中
计量
  • 文章访问数:  2315
  • HTML全文浏览量:  101
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-09-06
  • 修回日期:  2004-10-14
  • 刊出日期:  2005-01-15

目录

    /

    返回文章
    返回