留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性奇摄动问题激波位置的转移

莫嘉琪 王辉

莫嘉琪, 王辉. 一类非线性奇摄动问题激波位置的转移[J]. 应用数学和力学, 2005, 26(1): 53-57.
引用本文: 莫嘉琪, 王辉. 一类非线性奇摄动问题激波位置的转移[J]. 应用数学和力学, 2005, 26(1): 53-57.
MO Jia-qi, WANG Hui. Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 53-57.
Citation: MO Jia-qi, WANG Hui. Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 53-57.

一类非线性奇摄动问题激波位置的转移

基金项目: 国家自然科学基金资助项目(10471039);中国科学院"百人计划"资助项目
详细信息
    作者简介:

    莫嘉琪(1937- ),男,浙江德清人,教授(联系人.Tel:+86-553-3869642,+86-572-2321510;Email:mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.14

Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems

  • 摘要: 用一个特殊而简单的方法来讨论一类非线性奇摄动问题的激波位置.得出了在一定的情况下,当边界条件作微小的变化时,激波的位置将作较大的偏移,甚至由内层转到边界层.
  • [1] de Jager E M,JIANG Fu-ru.The Theory of Singular Perturbation[M].Amsterdam: North-Holland Publishing Co., 1996.
    [2] Bohé A.The shock location for a class of sensitive boundary value problems[J].J Math Anal Appl,1999,235(1): 295—314. doi: 10.1006/jmaa.1999.6399
    [3] Butuzov V F,Smurov I.Initial boundary value problem for a singularly perturbed parabolic equation in case of exchange of stability[J].J Math Anal Appl,1999,234(1):183—192. doi: 10.1006/jmaa.1999.6351
    [4] O'Malley Jr R E.On the asymptotic solution of the singularly perturbed boundary value problems posed by Bohé[J].J Math Anal Appl,2000,242(1):18—38. doi: 10.1006/jmaa.1999.6641
    [5] Butuzov V F,Nefedov N N,Schneider K R.Singularly perturbed elliptic problems in the case of exchange of stabilities[J].J Differential Equations,2001,169(2):373—395. doi: 10.1006/jdeq.2000.3904
    [6] Kelley W G.A singular perturbation problem of Carrier and Pearson[J].J Math Anal Appl,2001,255(3):678—697. doi: 10.1006/jmaa.2000.7308
    [7] MO Jia-qi.Singular perturbation for a boundary value problems of fourth order nonlinear differential equation[J].Chinese Ann Math,Ser B,1989,8(1):80—88.
    [8] MO Jia-qi.A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289—293. doi: 10.1006/jmaa.1993.1307
    [9] MO Jia-qi.A class of singularly perturbed boundary value problems for nonlinear differential systems[J].Systems Sci Math Sci,1999,12(1): 56—58.
    [10] MO Jia-qi.The singularly perturbed problem for combustion reaction diffusion[J].Acta Math Appl Sinica(English Ser),2001,17(2):255—259. doi: 10.1007/BF02669579
    [11] MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China,Ser A,1989,32(11):1306—1315.
    [12] MO Jia-qi.A class of singularly perturbed problems with nonlinear reaction diffusion equation[J].Adv in Math,1998,27(1):53—58.
    [13] MO Jia-qi.A class of singularly perturbed reaction diffusion integral differential system[J].Acta Math Appl Sinica,1999,15(1):19—23.
    [14] MO Jia-qi,CHEN Yu-sen.A class of singularly perturbed for reaction diffusion systems with nonlocal boundary conditions[J].Acta Math Sci,1997,17(1):25—30.
    [15] MO Jia-qi,Ouyang Cheng.A class of nonlocal boundary value problems of nonlinear elliptic systems in unbounded domains[J].Acta Math Sci,2001,21(1):93—97.
    [16] MO Jia-qi,WANG Hui.A class of nonlinear nonlocal singularly perturbed problems for reaction diffusion equations[J].J Biomath,2002,17(2):143—148.
    [17] MO Jia-qi,WANG Hui.The shock solution for quasilinear singularly perturbed Robin problem[J].Progress in Natural Sci,2002,12(12):945—947.
    [18] Jacson L K.Subfunctions and second order ordinary differential inequalities[J].Adv in Math,1968,2(2):307—363. doi: 10.1016/0001-8708(68)90022-4
    [19] Laforgue J G,O'Malley R E.Shock layer movement for Burgers equation[J].SIAM J Appl Math,1995,55(2):332—348. doi: 10.1137/S003613999326928X
  • 加载中
计量
  • 文章访问数:  2780
  • HTML全文浏览量:  132
  • PDF下载量:  645
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-05-06
  • 修回日期:  2004-08-07
  • 刊出日期:  2005-01-15

目录

    /

    返回文章
    返回